We study stationary relativistic scattering theory for a δ-sphere interaction formally given by the Hamiltonian with the boundary conditions of second type. First we give the mathematical definition of the model, self-adjointness of the Hamiltonian, indicial equation, stationary scattering theory and the spectral properties. Next we extend the model by adding a Coulomb potential and provide useful mathematical definitions and corresponding stationary scattering elements.
REFERENCES
1.
M. N.
Hounkonnou
, M.
Hounkpe
, and J.
Shabani
, J. Math. Phys.
38
, 2832
(1997
).2.
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Texts and Monographs in Physics (Springer, Berlin, 1988).
3.
J.-P.
Antoine
, F.
Gesztesy
, and J.
Shabani
, J. Phys. A
20
, 3687
(1987
).4.
J.
Dittrich
, P.
Exner
, and P.
S̆eba
, J. Math. Phys.
30
, 2875
(1989
).5.
J.
Dittrich
, P.
Exner
, and P.
S̆eba
, J. Math. Phys.
33
, 2207
(1992
).6.
7.
8.
9.
10.
11.
12.
13.
J.-P.
Antoine
, P.
Exner
, P.
S̆eba
, and J.
Shabani
, Ann. Phys. (Paris)
233
, 1
(1994
).14.
J.-P.
Antoine
, P.
Exner
, P.
S̆eba
, and J.
Shabani
, Operator Theory: Adv. Appl.
70
, 79
(1994
).15.
16.
17.
18.
M. Hounkpe, Ph.D. thesis, Université Nationale du Bénin, 1997.
19.
20.
21.
22.
J.
Rubio
and F.
Garcia-Moller
, Proc. Phys. Soc. London
92
, 206
(1967
).23.
A. F. Nikiforov and V. B. Ouvarov, Special Functions of Mathematical Physics (MIR, Moscow, 1976).
24.
V. B. Beresteckij, E. M. Lifschitz, and L. P. Pitaevskij, Quantum Electrodynamics (Nauka, Moscow, 1980).
25.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
26.
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Pitman, Boston, 1981), Vol. 2.
27.
R. G. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982), 2nd edition.
28.
N. Dunford and J. T. Schartz, Linear Operators, Part 2- Spectral Theory (Interscience, New York, 1963).
29.
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators Vol. 4 (Academic, New York, 1978).
This content is only available via PDF.
© 2000 American Institute of Physics.
2000
American Institute of Physics
You do not currently have access to this content.