Jordanian quantizations of Lie algebras are studied using the factorizable twists. For a restricted Borel subalgebra of the explicit expressions are obtained for the twist element ℱ, universal ℛ-matrix and the corresponding canonical element 𝒯. It is shown that the twisted Hopf algebra is self-dual. The cohomological properties of the involved Lie bialgebras are studied to justify the existence of a contraction from the Dinfeld–Jimbo quantization to the Jordanian one. The construction of the twist is generalized to a certain type of inhomogenious Lie algebras.
REFERENCES
1.
V. G. Drinfeld, “Quantum groups,” in Proceedings of the International Congress of Mathematicians, Berkeley, 1986, edited by A. V. Gleason (AMS, Providence, 1987), Vol. 1, pp. 798–820.
2.
3.
F.
Bayen
, M.
Flato
, A
Lichnerowicz
, and D.
Stenheimer
, Ann. Phys.
111
, 61
(1978
);4.
A. A. Belavin and V. G. Drinfeld, “Triangle equations and simple Lie algebras,” in Mathematics Physics Reviews, edited by S. P. Novikov (Harwood, New York, 1984), pp. 93–166.
5.
6.
L. D.
Faddeev
, N. Yu.
Reshetikhin
, and L. A.
Takhtajan
, Algebra i Analiz
1
, 178
(1989
), [English translation: Leningrad Math. J. 1, 193 (1990)].7.
8.
9.
M. Gerstenhaber, A. Giaquinto, and S. D. Schack, in Quantum groups. Proceedings in EIMI 1990, Lecture Notes in Mathematics edited by P. P. Kulish (Springer-Verlag, Berlin, 1992), Vol. 1510, pp. 9–46.
10.
O. V. Ogievetsky, in Proceedings Winter School Geometry and Physics, Zidkov, Suppl. Rendiconti cir. Math. Palermo, Serie II-N 37 (1993), p. 185; preprint MPI-Ph/92-99, Munich (1992).
11.
12.
A. A.
Vladimirov
, hep-th/9401101.13.
A.
Ballesteros
, F. J.
Herranz
, M. A.
del Olmo
, C. M.
Perena
, and M.
Santander
, J. Phys. A
28
, 7113
(1995
).14.
N. Yu.
Reshetikhin
and M. A.
Semenov-Tian-Shansky
, J. Geom. Phys.
5
(4
), 533
(1988
).15.
16.
17.
B.
Abdesselam
, A.
Chakrabarti
, and R.
Chakrabarti
, “General Construction of Nonstandard -matrices as Contraction Limits of -matrices
,” preprint q-alg/9706033.18.
V. Chari and A. Pressley, A Guide to Quantum Groups (CUP, 1994).
19.
20.
J.
Lukierski
, P.
Minnaert
, and M.
Mozrzymas
, Phys. Lett. B
371
, 251
(1996
).21.
V. D.
Lyakhovsky
and A. M.
Mirolyubov
, Int. J. Mod. Phys. A
12
, 225
(1997
).22.
N. Burbaki, Elements de Mathematique Algebras (Hermann, Paris, 1970), L II, Chap. 4, Sec. 5.10.
23.
24.
25.
A. Guichardet, Cohomologie des groupes topologiques et des algebres de Lie (Cedic/Fernand Nathan, Paris 1980).
26.
M.
Gerstenhaber
and A.
Giaquinto
, Lett. Math. Phys.
40
, 337
(1997
).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.