Jordanian quantizations of Lie algebras are studied using the factorizable twists. For a restricted Borel subalgebra B of sl(N) the explicit expressions are obtained for the twist element ℱ, universal ℛ-matrix and the corresponding canonical element 𝒯. It is shown that the twisted Hopf algebra UF(B) is self-dual. The cohomological properties of the involved Lie bialgebras are studied to justify the existence of a contraction from the Dinfeld–Jimbo quantization to the Jordanian one. The construction of the twist is generalized to a certain type of inhomogenious Lie algebras.

1.
V. G. Drinfeld, “Quantum groups,” in Proceedings of the International Congress of Mathematicians, Berkeley, 1986, edited by A. V. Gleason (AMS, Providence, 1987), Vol. 1, pp. 798–820.
2.
M.
Jimbo
,
Lett. Math. Phys.
10
,
63
(
1985
);
M.
Jimbo
,
Lett. Math. Phys.
11
,
247
(
1986
).
3.
F.
Bayen
,
M.
Flato
,
A
Lichnerowicz
, and
D.
Stenheimer
,
Ann. Phys.
111
,
61
(
1978
);
M.
Flato
and
D.
Sternheimer
,
Lett. Math. Phys.
22
,
155
(
1991
).
4.
A. A. Belavin and V. G. Drinfeld, “Triangle equations and simple Lie algebras,” in Mathematics Physics Reviews, edited by S. P. Novikov (Harwood, New York, 1984), pp. 93–166.
5.
P.
Etingof
and
D.
Kazhdan
,
Selecta Math. 2, N
1
,
1
-
41
(
1996
);
P.
Etingof
and
D.
Kazhdan
, q-alg/9510020.
6.
L. D.
Faddeev
,
N. Yu.
Reshetikhin
, and
L. A.
Takhtajan
,
Algebra i Analiz
1
,
178
(
1989
), [English translation: Leningrad Math. J. 1, 193 (1990)].
7.
V. G.
Drinfeld
,
Leningrad Math. J.
1
,
1419
(
1990
).
8.
V. G.
Drinfeld
,
Dokl. Akad. Nauk SSSR
273
(
3
),
531
(
1983
).
9.
M. Gerstenhaber, A. Giaquinto, and S. D. Schack, in Quantum groups. Proceedings in EIMI 1990, Lecture Notes in Mathematics edited by P. P. Kulish (Springer-Verlag, Berlin, 1992), Vol. 1510, pp. 9–46.
10.
O. V. Ogievetsky, in Proceedings Winter School Geometry and Physics, Zidkov, Suppl. Rendiconti cir. Math. Palermo, Serie II-N 37 (1993), p. 185; preprint MPI-Ph/92-99, Munich (1992).
11.
P. P.
Kulish
and
A. A.
Stolin
,
Czech. J. Phys.
47
,
123
(
1997
);
P. P.
Kulish
and
A. A.
Stolin
, preprint q-alg/9708024;
J. A.
de Azecarraga
,
P. P.
Kulish
, and
F.
Rodenas
,
Z. Phys. C
76
,
567
(
1997
).
12.
A. A.
Vladimirov
,
Mod. Phys. Lett. A
8
(
23
),
2573
(
1993
);
A. A.
Vladimirov
, hep-th/9401101.
13.
A.
Ballesteros
,
F. J.
Herranz
,
M. A.
del Olmo
,
C. M.
Perena
, and
M.
Santander
,
J. Phys. A
28
,
7113
(
1995
).
14.
N. Yu.
Reshetikhin
and
M. A.
Semenov-Tian-Shansky
,
J. Geom. Phys.
5
(
4
),
533
(
1988
).
15.
N. Yu.
Reshetikhin
,
Lett. Math. Phys.
20
,
331
(
1990
).
16.
M.
Alishahiha
,
J. Phys. A
28
,
6187
(
1995
).
17.
B.
Abdesselam
,
A.
Chakrabarti
, and
R.
Chakrabarti
, “
General Construction of Nonstandard Rh-matrices as Contraction Limits of Rq-matrices
,” preprint q-alg/9706033.
18.
V. Chari and A. Pressley, A Guide to Quantum Groups (CUP, 1994).
19.
A.
Nijenhuis
and
R.
Richardson
,
Bull. Am. Math. Soc.
72
,
1
(
1966
).
20.
J.
Lukierski
,
P.
Minnaert
, and
M.
Mozrzymas
,
Phys. Lett. B
371
,
251
(
1996
).
21.
V. D.
Lyakhovsky
and
A. M.
Mirolyubov
,
Int. J. Mod. Phys. A
12
,
225
(
1997
).
22.
N. Burbaki, Elements de Mathematique Algebras (Hermann, Paris, 1970), L II, Chap. 4, Sec. 5.10.
23.
S. L.
Woronowicz
,
Rep. Math. Phys.
30
,
259
(
1991
).
24.
M.
Gerstenhaber
,
Ann. Math.
78
,
267
(
1963
).
25.
A. Guichardet, Cohomologie des groupes topologiques et des algebres de Lie (Cedic/Fernand Nathan, Paris 1980).
26.
M.
Gerstenhaber
and
A.
Giaquinto
,
Lett. Math. Phys.
40
,
337
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.