We introduce and perform a systematic study of a new exactly solvable model of sphere interactions in quantum mechanics : the interaction, formally given by We also consider the cases of a plus a Coulomb interaction and finitely many -sphere interactions with support on concentric spheres. For all these models, we provide basic properties and discuss the stationary scattering theory. We also briefly discuss the -sphere interaction of the second type.
REFERENCES
1.
J-P.
Antoine
, F.
Gesztesy
, and J.
Shabani
, J. Phys. A
20
, 3687
–3712
(1987
).2.
3.
4.
5.
6.
7.
8.
J.-P.
Antoine
, P.
Exner
, P.
Sěba
, and J.
Shabani
, Ann. Phys. (N.Y.)
233
, 1
–16
(1994
).9.
J.-P. Antoine, P. Exner, P. Sĕba, and J. Shabani, Operator Theory: Advances and Applications, 1994, Vol. 70, pp. 79–87.
10.
J.
Dittrich
, P.
Exner
, and P.
Sěba
, J. Math. Phys.
30
, 2275
–2282
(1989
).11.
J.
Dittrich
, P.
Exner
, and P.
Sěba
, J. Math. Phys.
33
, 2207
–2214
(1992
).12.
M. N.
Hounkonnou
, M.
Hounkpe
, and J.
Shabani
, J. Math. Phys.
38
, 2832
–2850
(1997
).13.
M. Abramowitz and I. A. Stegun: Handbook of Mathematical Functions (Dover, New York, 1972).
14.
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Pitman, Boston, 1981), Vol. 2.
15.
S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Texts and Monographs in Physics (Springer-Verlag, Berlin, 1988).
16.
M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. 4; Analysis of Operators (Academic, New York, 1978).
17.
H. Nussenveig, Causality and Dispersion Relations (Academic, New York, 1972).
18.
19.
R. G. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Springer-Verlag, New York, 1982).
20.
21.
N. Dunford and J. T. Schwarz, Linear Operators Part II- Spectral Theory (Interscience, New York, 1963).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.