The properties of linear equations on braided linear spaces are investigated and conservation laws for them are derived. The conserved currents are given in the explicit form. The procedure is then applied to scalar wave equations on a quantum plane and on q-Minkowski space.

1.
Y. Takahashi, An Introduction to Field Quantization (Pergamon, Oxford, 1969).
2.
M.
Klimek
, “
Extension of q-deformed analysis and q-deformed models of classical mechanics
,”
J. Phys. A
26
,
955
967
(
1993
).
3.
M.
Klimek
, “
The conservation laws for deformed classical models
,”
Czech. J. Phys.
44
,
1049
1057
(
1994
).
4.
M.
Klimek
, “
The conservation laws and integrals of motion for a certain class of equations in discrete models
,”
J. Phys. A
29
,
1747
1758
(
1996
).
5.
M.
Klimek
, “
Conservation laws for linear equations of motion on quantum Minkowski spaces
,”
Commun. Math. Phys.
192
,
29
45
(
1998
).
6.
M. Klimek, “The symmetry algebra and conserved currents for Klein-Gordon equation on quantum Minkowski space,” in Quantum Groups and Quantum Spaces, Banach Center Publications, edited by R. Budzyński, W. Pusz, and S. Zakrzewski, Warszawa: Institute of Math., Polish Acad. Sci., Warszawa 1997, Vol. 40.
7.
P.
Podleś
and
S. L.
Woronowicz
, “
On the structure of inhomogeneous quantum groups
,”
Commun. Math. Phys.
185
,
325
358
(
1997
).
8.
P.
Podleś
and
S. L.
Woronowicz
, “
On the classification of quantum Poincaré groups
,”
Commun. Math. Phys.
178
,
61
82
(
1996
).
9.
P.
Podleś
and
S. L.
Woronowicz
, “
Quantum deformation of Lorentz group
,”
Commun. Math. Phys.
130
,
381
431
(
1990
).
10.
P.
Podleś
, “
Solutions of Klein–Gordon and Dirac equations on quantum Minkowski spaces
,”
Commun. Math. Phys.
181
,
569
585
(
1996
).
11.
S. Majid, “Introduction to braided geometry and q-Minkowski space” in Quantum Groups and their Applications, Proceedings of the International School of Physics “Enrico Fermi” Varenna, edited by L. Castellani and J. Wess, 1994.
12.
U.
Meyer
, “
Wave equations on q-Minkowski space
,”
Commun. Math. Phys.
174
,
457
475
(
1996
).
13.
M.
Pillin
, “
q-deformed relativistic wave equations
,”
J. Math. Phys.
35
,
2804
2817
(
1994
).
14.
S.
Majid
, “
Free braided differential calculus, braided binomial theorem and the braided exponential map
,”
J. Math. Phys.
34
,
4843
4856
(
1993
).
15.
S.
Majid
, “
Braided momentum in the q-Poincaré group
,”
J. Math. Phys.
34
,
2045
2058
(
1993
).
16.
M.
Klimek
, “
Integrals of motion for some equations on q-Minkowski space
,”
Czech. J. Phys.
47
,
1199
1206
(
1997
).
17.
J. A.
Azcárraga
,
P. P.
Kulish
, and
F.
Rodenas
, “
On the physical contents of q-deformed Minkowski spaces
,”
Phys. Lett. B
351
,
123
130
(
1995
).
18.
J. A.
Azcárraga
,
P. P.
Kulish
, and
F.
Rodenas
, “
Quantum groups and deformed special relativity
,”
Fortschr. Phys.
44
,
1
40
(
1996
).
19.
S.
Majid
, “
Braided geometry of the conformal algebra
,”
J. Math. Phys.
37
,
6495
6509
(
1996
).
20.
S.
Doplicher
,
K.
Fredenhagen
, and
J. E.
Roberts
, “
The quantum structure of spacetime at the Planck scale and quantum fields
,”
Commun. Math. Phys.
172
,
187
220
(
1995
).
21.
S.
Doplicher
,
K.
Fredenhagen
, and
J. E.
Roberts
, “
Spacetime quantization induced by classical gravity
,”
Phys. Lett. B
331
,
39
44
(
1994
).
22.
J.
Madore
and
J.
Mourad
, “
Quantum space–time and classical gravity
,”
J. Math. Phys.
39
,
423
442
(
1998
).
23.
Ch.
Chryssomalakos
, “
Remarks on quantum integration
,”
Commun. Math. Phys.
184
,
1
25
(
1997
).
24.
Ch. Chryssomalakos, “Applications of quantum groups,” Ph.D. thesis, UC Berkeley, 1994.
25.
A.
Kempf
and
S.
Majid
, “
Algebraic q-integration and Fourier theory on quantum and braided spaces
,”
J. Math. Phys.
35
,
6802
6836
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.