Let (P,π,B,G) be a G-principal fiber bundle. The action of G on the cotangent bundle T*P is free and Hamiltonian. By Liberman and Marle [Symplectic Geometry and Analytical Mechanics (Reidel, Dortrecht, 1987)] and Marsden and Ratiu [Lett. Math. Phys. 11, 161 (1981)] the quotient space T*P/G is a Poisson manifold. We will determine the Poisson bracket on the reduced Poisson manifold T*P/G, and its symplectic leaves.

1.
P. Liberman and C. M. Marle, Symplectic Geometry and Analytical Mechanics (Reidel, Dortrecht, 1987).
2.
J. E.
Marsden
and
T. S.
Ratiu
, “
Reduction of Poisson manifolds
,”
Lett. Math. Phys.
11
,
161
170
(
1986
).
3.
S.
Sternberg
, “
Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field
,”
Proc. Natl. Acad. Sci. USA
74
,
5253
5254
(
1977
).
4.
A.
Weinstein
, “
A universal phase space for particules in Yang–Mills fields
,”
Lett. Math. Phys.
2
,
417
420
(
1978
).
5.
M.
Kummer
, “
On the construction of reduced phase space of a Hamiltonian system with symmetry
,”
Indiana. Univ. Math. J.
30
,
281
291
(
1981
).
6.
R.
Montgomery
,
J. E.
Marsden
, and
T. S.
Ratiu
, “
Gauged Lie Poisson structures
,”
Contemp. Math.
28
,
101
114
(
1984
).
7.
R. Abraham and J. E. Marsden, Foundations of Mechanics. 2nd ed. (Addison–Wesley, Reading, MA, 1978).
8.
J. M. Souriau, Structure des Systèmes Dynamiques (Dunod, Paris, 1970).
9.
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, New York, 1984).
10.
W. Greub, S. Halperin, and R. Vanstone, Connections, Curvatures and Cohomology (Academic, New York, 1973).
11.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley, New York, 1963, 1969).
12.
J. E.
Marsden
and
A.
Weinstein
, “
Reduction of symplectic manifolds with symmetry
,”
Rep. Math. Phys.
5
,
121
130
(
1974
).
13.
C. M. Marle, Symplectic Manifolds, Dynamical Groups and Hamiltonian Mechanics (Reidel, Dortrecht, 1976).
This content is only available via PDF.
You do not currently have access to this content.