Let be a G-principal fiber bundle. The action of G on the cotangent bundle is free and Hamiltonian. By Liberman and Marle [Symplectic Geometry and Analytical Mechanics (Reidel, Dortrecht, 1987)] and Marsden and Ratiu [Lett. Math. Phys. 11, 161 (1981)] the quotient space is a Poisson manifold. We will determine the Poisson bracket on the reduced Poisson manifold and its symplectic leaves.
REFERENCES
1.
P. Liberman and C. M. Marle, Symplectic Geometry and Analytical Mechanics (Reidel, Dortrecht, 1987).
2.
J. E.
Marsden
and T. S.
Ratiu
, “Reduction of Poisson manifolds
,” Lett. Math. Phys.
11
, 161
–170
(1986
).3.
S.
Sternberg
, “Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field
,” Proc. Natl. Acad. Sci. USA
74
, 5253
–5254
(1977
).4.
A.
Weinstein
, “A universal phase space for particules in Yang–Mills fields
,” Lett. Math. Phys.
2
, 417
–420
(1978
).5.
M.
Kummer
, “On the construction of reduced phase space of a Hamiltonian system with symmetry
,” Indiana. Univ. Math. J.
30
, 281
–291
(1981
).6.
R.
Montgomery
, J. E.
Marsden
, and T. S.
Ratiu
, “Gauged Lie Poisson structures
,” Contemp. Math.
28
, 101
–114
(1984
).7.
R. Abraham and J. E. Marsden, Foundations of Mechanics. 2nd ed. (Addison–Wesley, Reading, MA, 1978).
8.
J. M. Souriau, Structure des Systèmes Dynamiques (Dunod, Paris, 1970).
9.
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, New York, 1984).
10.
W. Greub, S. Halperin, and R. Vanstone, Connections, Curvatures and Cohomology (Academic, New York, 1973).
11.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wiley, New York, 1963, 1969).
12.
J. E.
Marsden
and A.
Weinstein
, “Reduction of symplectic manifolds with symmetry
,” Rep. Math. Phys.
5
, 121
–130
(1974
).13.
C. M. Marle, Symplectic Manifolds, Dynamical Groups and Hamiltonian Mechanics (Reidel, Dortrecht, 1976).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.