(1) Utilizing a braid group action on a completion of Uq(sln+1∧), an algebra homomorphism from the toroidal algebra Uq(sln+1,tor)(n⩾2) to a completion of Uq(gln+1∧) is obtained. (2) The toroidal actions by Saito induces a level 0 Uq(sln+1∧) action on level 1 integrable highest weight modules of Uq(sln+1∧). Another level 0 Uq(sln+1∧) action was defined by Jimbo et al., in the case n=1. Using the fact that the intertwiners of Uq(sln+1∧) modules are intertwiners of toroidal modules for an appropriate comultiplication, the relation between these two level 0 Uq(sln+1∧) actions is clarified.

1.
V.
Ginzburg
,
M.
Kapranov
, and
E.
Vasserot
, “
Langlands reciprocity for algebraic surfaces
,”
Math. Res. Lett.
2
,
147
160
(
1995
).
2.
M.
Varagnolo
and
E.
Vasserot
, “
Schur duality in the toroidal setting
,”
Commun. Math. Phys.
182
,
469
484
(
1996
).
3.
I. V.
Cherednik
, “
Double affine Hecke algebras and Macdonald’s conjectures
,”
Ann. Math.
141
,
191
216
(
1995
).
4.
Y.
Saito
, “
Quantum toroidal algebras and their vertex representations
,”
Publ. RIMS. Kyoto Univ.
34
,
155
177
(
1998
).
5.
K. Takemura and D. Uglov, “Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type gl(N)” (preprint math/9806134).
6.
V.
Chari
and
A.
Pressley
, “
Quantum affine algebras
,”
Commun. Math. Phys.
142
,
261
283
(
1991
).
7.
M.
Varagnolo
and
E.
Vasserot
, “
Double-loop algebras and the Fock space
,”
Invent. Math.
133
,
133
159
(
1998
).
8.
Y.
Saito
,
K.
Takemura
, and
D.
Uglov
, “
Toroidal actions on level 1 modules of Uq(sln∧),
Trans. Groups
1
,
75
102
(
1998
).
9.
M.
Kashiwara
,
T.
Miwa
, and
E.
Stern
, “
Decomposition of q-deformed Fock spaces
,”
Selecta Math., New Series
1
,
787
805
(
1995
).
10.
M. Jimbo, R. Kedem, H. Konno, T. Miwa, and J.-U. H. Petersen, “New level-0 action of Uq(sl2∧) on level-1 modules,” in Proceedings of the Statistical Mechanics and Quantum Field Theory, University of Southern California, 16–21 May 1994 (unpublished).
11.
D.
Bernard
,
V.
Pasquier
, and
D.
Serban
, “
Spinons in conformal field theory
,”
Nucl. Phys. B
428
,
612
628
(
1994
).
12.
J. Ding and S. Khoroshkin, “Weyl group extensions of quantum current algebras” (preprint math/9804139).
13.
M.
Jimbo
, “
A q-analog of U(gl(N+1)), Hecke algebra, and the Yang–Baxter equation
,”
Lett. Math. Phys.
11
,
247
252
(
1986
).
14.
G.
Lusztig
, “
Quantum deformations of certain simple modules over enveloping algebras
,”
Adv. Math.
70
,
237
249
(
1988
).
15.
V. G.
Drinfeld
, “
New realizations of Yangian and quantum affine algebra
,”
Sov. Math. Dokl.
36
,
212
216
(
1988
).
16.
J.
Ding
and
I.
Frenkel
, “
Isomorphism of two realizations of quantum affine algebra Uq(gln∧),
Commun. Math. Phys.
156
,
277
300
(
1993
).
17.
J.
Beck
, “
Braid group actions and quantum affine algebras
,”
Commun. Math. Phys.
165
,
555
568
(
1994
).
18.
M.
Rosso
, “
Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra
,”
Commun. Math. Phys.
117
,
581
593
(
1988
).
19.
S. M.
Khoroshkin
and
V. N.
Tolstoy
, “Twisting of quantum (super) algebras. Connection of Drinfeld’s and Cartan–Weyl realizations for quantum affine algebras” (preprint hep-th/9404036).
20.
J.
Ding
and
K.
Iohara
, “
Drinfeld comultiplication and vertex operators
,”
J. Geom. Phys.
23
,
1
13
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.