(1) Utilizing a braid group action on a completion of an algebra homomorphism from the toroidal algebra to a completion of is obtained. (2) The toroidal actions by Saito induces a level 0 action on level 1 integrable highest weight modules of Another level 0 action was defined by Jimbo et al., in the case Using the fact that the intertwiners of modules are intertwiners of toroidal modules for an appropriate comultiplication, the relation between these two level 0 actions is clarified.
REFERENCES
1.
V.
Ginzburg
, M.
Kapranov
, and E.
Vasserot
, “Langlands reciprocity for algebraic surfaces
,” Math. Res. Lett.
2
, 147
–160
(1995
).2.
M.
Varagnolo
and E.
Vasserot
, “Schur duality in the toroidal setting
,” Commun. Math. Phys.
182
, 469
–484
(1996
).3.
I. V.
Cherednik
, “Double affine Hecke algebras and Macdonald’s conjectures
,” Ann. Math.
141
, 191
–216
(1995
).4.
Y.
Saito
, “Quantum toroidal algebras and their vertex representations
,” Publ. RIMS. Kyoto Univ.
34
, 155
–177
(1998
).5.
K. Takemura and D. Uglov, “Representations of the quantum toroidal algebra on highest weight modules of the quantum affine algebra of type ” (preprint math/9806134).
6.
V.
Chari
and A.
Pressley
, “Quantum affine algebras
,” Commun. Math. Phys.
142
, 261
–283
(1991
).7.
M.
Varagnolo
and E.
Vasserot
, “Double-loop algebras and the Fock space
,” Invent. Math.
133
, 133
–159
(1998
).8.
Y.
Saito
, K.
Takemura
, and D.
Uglov
, “Toroidal actions on level 1 modules of
” Trans. Groups
1
, 75
–102
(1998
).9.
M.
Kashiwara
, T.
Miwa
, and E.
Stern
, “Decomposition of q-deformed Fock spaces
,” Selecta Math., New Series
1
, 787
–805
(1995
).10.
M. Jimbo, R. Kedem, H. Konno, T. Miwa, and J.-U. H. Petersen, “New level-0 action of on level-1 modules,” in Proceedings of the Statistical Mechanics and Quantum Field Theory, University of Southern California, 16–21 May 1994 (unpublished).
11.
D.
Bernard
, V.
Pasquier
, and D.
Serban
, “Spinons in conformal field theory
,” Nucl. Phys. B
428
, 612
–628
(1994
).12.
J. Ding and S. Khoroshkin, “Weyl group extensions of quantum current algebras” (preprint math/9804139).
13.
M.
Jimbo
, “A q-analog of Hecke algebra, and the Yang–Baxter equation
,” Lett. Math. Phys.
11
, 247
–252
(1986
).14.
G.
Lusztig
, “Quantum deformations of certain simple modules over enveloping algebras
,” Adv. Math.
70
, 237
–249
(1988
).15.
V. G.
Drinfeld
, “New realizations of Yangian and quantum affine algebra
,” Sov. Math. Dokl.
36
, 212
–216
(1988
).16.
J.
Ding
and I.
Frenkel
, “Isomorphism of two realizations of quantum affine algebra
” Commun. Math. Phys.
156
, 277
–300
(1993
).17.
J.
Beck
, “Braid group actions and quantum affine algebras
,” Commun. Math. Phys.
165
, 555
–568
(1994
).18.
M.
Rosso
, “Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra
,” Commun. Math. Phys.
117
, 581
–593
(1988
).19.
S. M.
Khoroshkin
and V. N.
Tolstoy
, “Twisting of quantum (super) algebras. Connection of Drinfeld’s and Cartan–Weyl realizations for quantum affine algebras” (preprint hep-th/9404036).20.
J.
Ding
and K.
Iohara
, “Drinfeld comultiplication and vertex operators
,” J. Geom. Phys.
23
, 1
–13
(1997
).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.