We obtain connection coefficients between q-binomial and q-trinomial coefficients. Using these, one can transform q-binomial identities into q-trinomial identities and back again. To demonstrate the usefulness of this procedure we rederive some known trinomial identities related to partition theory and prove many of the conjectures of Berkovich, McCoy and Pearce, which have recently arisen in their study of the φ2,1 and φ1,5 perturbations of minimal conformal field theory.

1.
G. E. Andrews, “The theory of partitions,” Encyclopedia of Mathematics and its Applications (Addison-Wesley, Reading, MA, 1976), Vol. 2.
2.
G. E. Andrews, “q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra,” in CBMS Regional Conference Series in Mathemancs (AMS, Providence, RI, 1985), Vol. 66.
3.
G. Gasper and M. Rahman, “Basic hypergeometric series,” Encyclopedia of Mathematics and its Applications (Cambridge Univiversity Press, Cambridge, 1990).
4.
P. A. MacMahon, Combinatory Analysis (Cambridge University Press, London and New York, 1916), Vol. 2.
5.
P. J.
Forrester
and
G. E.
Andrews
, “
Height probabilities in solid-on-solid models. I
,”
J. Phys. A
19
,
L923
L926
(
1986
).
6.
G. E.
Andrews
and
R. J.
Baxter
, “
Lattice gas generalization of the hard hexagon model. III. q-Trinomial coefficients
,”
J. Stat. Phys.
47
,
297
330
(
1987
).
7.
G. E. Andrews, “q-Trinomial coefficients and Rogers–Ramanujan type identities,” in Analytic Number Theory, edited by B. C. Berndt, H. G. Diamond, and A. J. Hildebrand (Birkhäuser, Boston, 1990), pp. 1–11.
8.
G. E.
Andrews
, “Euler’s ‘
Exemplum memorabile inductionis fallacis’ and q-trinomial coefficients
,”
J. Am. Math. Soc.
3
,
653
669
(
1990
).
9.
G. E.
Andrews
, “
Schur’s theorem, Capparelli’s conjecture and q-trinomial coefficients
,”
Contemp. Math.
166
,
141
154
(
1994
).
10.
S. O.
Warnaar
and
P. A.
Pearce
, “
Exceptional structure of the dilute A3 model: E8 and E7 Rogers–Ramanujan identities
,”
J. Phys. A
27
,
L891
L897
(
1994
).
11.
S. O.
Warnaar
,
P. A.
Pearce
,
K. A.
Seaton
, and
B.
Nienhuis
, “
Order parameters of the dilute A models
,”
J. Stat. Phys.
74
,
469
531
(
1994
).
12.
G. E. Andrews, “Rogers–Ramanujan polynomials for modulus 6,” in Analytic Number Theory: Proceedings of a Conference in Honor of Heini Halberstam, edited by B. C. Berndt, H. G. Diamond, and A. J. Hildebrand (Birkhäuser, Boston, 1996), Vol. 1, pp. 17–30.
13.
A.
Berkovich
,
B. M.
McCoy
, and
W. P.
Orrick
, “
Polynomial identities, indices, and duality for the N=1 superconformal model SM(2,4ν),
J. Stat. Phys.
83
,
795
837
(
1996
).
14.
A.
Schilling
, “
Multinomials and polynomial bosonic forms for the branching functions of the su∧(2)M×su∧(2)N/su∧(2)N+M conformal coset models
,”
Nucl. Phys. B
467
,
247
271
(
1996
).
15.
S. O.
Warnaar
, “
Fermionic solution of the Andrews–Baxter–Forrester model. II. Proof of Melzer’s polynomial identities
,”
J. Stat. Phys.
84
,
49
83
(
1996
).
16.
A.
Berkovich
and
B. M.
McCoy
, “
Generalizations of the Andrews–Bressoud identities for the N=1 superconformal model SM(2,2ν)
,”
Math. Comput. Modell.
26
,
37
49
(
1997
).
17.
K. A.
Seaton
and
L. C.
Scott
, “
q-Trinomial coefficients and the dilute A model
,”
J. Phys. A
30
,
7667
7676
(
1997
).
18.
S. O.
Warnaar
, “
The Andrews–Gordon identities and q-multinomial coefficients
,”
Commun. Math. Phys.
184
,
203
232
(
1997
).
19.
G. E.
Andrews
and
A.
Berkovich
, “
A trinomial analogue of Bailey’s lemma and N=2 superconformal invariance
,”
Commun. Math. Phys.
192
,
245
260
(
1998
).
20.
A.
Berkovich
and
B. M.
McCoy
, “
The perturbation φ2,1 of the M(p,p+1) models of conformal field theory and related polynomial character identities
,” preprint ITP-SB-98-49, math.QA/9809066. To appear in the Ramanujan Journal.
21.
A.
Berkovich
,
B. M.
McCoy
, and
P. A.
Pearce
, “
The perturbations φ2,1 and φ1,5 of the minimal models M(p,p) and the trinomial analogue of Bailey’s lemma
,”
Nucl. Phys. B
519
,
597
625
(
1998
).
22.
A.
Schilling
and
S. O.
Warnaar
, “
Supernomial coefficients, polynomial identities and q-series
,”
Ramanujan J.
2
,
459
494
(
1998
).
23.
S. O.
Warnaar
, “
A note on the trinomial analogue of Bailey’s lemma
,”
J. Comb. Theory, Ser. A
81
,
114
118
(
1998
).
24.
G. E.
Andrews
, “
A polynomial identity which implies the Rogers–Ramanujan identities
,”
Scr. Math.
28
,
297
305
(
1970
).
25.
I. J.
Schur
, “
Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche
,”
S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl.
X
,
302
321
(
1917
).
26.
L. J.
Slater
, “
Further identities of the Rogers–Ramanujan type
,”
Proc. London Math. Soc.
54
,
147
167
(
1952
).
27.
H.
Göllnitz
, “
Partitionen mit differenzenbedienungen
,”
J. Reine Angew. Math.
225
,
154
190
(
1967
).
28.
B.
Gordon
, “
Some continued fractions of the Rogers–Ramanujan type
,”
Duke Math. J.
31
,
741
748
(
1965
).
29.
A.
Berkovich
and
B. M.
McCoy
, “
Continued fractions and fermionic representations for characters of M(p,p) minimal models
,”
Lett. Math. Phys.
37
,
49
66
(
1996
).
30.
A.
Berkovich
,
B. M.
McCoy
, and
A.
Schilling
, “
Rogers–Schur–Ramanujan type identities for the M(p,p) minimal models of conformal field theory
,”
Commun. Math. Phys.
191
,
325
395
(
1998
).
31.
B. L.
Feigin
and
D. B.
Fuchs
, “
Verma modules over a Virasoro algebra
,”
Funct. Anal. Appl.
17
,
241
242
(
1983
).
32.
A. Rocha-Caridi, “Vacuum vector representation of the Virasoro algebra,” in Vertex Operators in Mathematics and Physics, edited by J. Lepowsky, S. Mandelstam, and I. M. Singer (Springer-Verlag, Berlin, 1985), pp. 451–473.
33.
V. K.
Dobrev
, “
Characters of the irreducible highest weight modules over the Virasoro and super-Virasoro algebras
,”
Rend. Circ. Mat. Palermo (2) Suppl.
14
,
25
42
(
1987
).
34.
G. E.
Andrews
,
R. J.
Baxter
, and
P. J.
Forrester
, “
Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities
,”
J. Stat. Phys.
35
,
193
266
(
1984
).
35.
R. J.
Baxter
and
P. J.
Forrester
, “
Further exact solutions of the eight-vertex SOS model and generalizations of the Rogers–Ramanujan identities
,”
J. Stat. Phys.
38
,
435
472
(
1985
).
36.
G. E.
Andrews
,
R. J.
Baxter
,
D. M.
Bressoud
,
W. H.
Burge
,
P. J.
Forrester
, and
G.
Viennot
, “
Partitions with prescribed hook differences
,”
Eur. J. Comb.
8
,
341
350
(
1987
).
37.
O.
Foda
,
K. S. M.
Lee
, and
T. A.
Welsh
, “
A Burge tree of Virasoro-type polynomial identities
,”
Int. J. Mod. Phys. A
13
,
4967
5012
(
1998
).
38.
A.
Berkovich
, “
Fermionic counting of RSOS-states and Virasoro character formulas for the unitary minimal series M(ν,ν+1). Exact results
,”
Nucl. Phys. B
431
,
315
348
(
1994
).
39.
S. O.
Warnaar
, “
Fermionic solution of the Andrews–Baxter–Forrester model. I. Unification of CTM and TBA methods
,”
J. Stat. Phys.
82
,
657
685
(
1996
).
40.
O.
Foda
and
Y.-H.
Quano
, “
Polynomial identities of the Rogers–Ramanujan type
,”
Int. J. Mod. Phys. A
10
,
2291
2315
(
1995
).
41.
S.
Dasmahapatra
,
R.
Kedem
,
T. R.
Klassen
,
B. M.
McCoy
, and
E.
Melzer
, “
Quasi-particles, conformal field theory, and q-series
,”
Int. J. Mod. Phys. B
7
,
3617
3648
(
1993
).
42.
A.
Schilling
, “
Polynomial fermionic forms for the branching functions of the rational coset conformal field theories su∧(2)M×su∧(2)N/su∧(2)N+M,
Nucl. Phys. B
459
,
393
436
(
1996
).
43.
W. N.
Bailey
, “
Identities of the Rogers–Ramanujan type
,”
Proc. London Math. Soc.
50
,
1
10
(
1949
).
This content is only available via PDF.
You do not currently have access to this content.