An algebraic structure related to discrete zero curvature equations is established. It is used to give an approach for generating master symmetries of the first degree for systems of discrete evolution equations and an answer to why there exist such master symmetries. The key of the theory is to generate nonisospectral flows tl, l⩾0) from the discrete spectral problem associated with a given system of discrete evolution equations. Three examples are given.

1.
A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, in What is Integrability?, edited by V. E. Zakhalov (Springer-Verlag, Berlin, 1991), pp. 115–184.
2.
D.
Levi
and
R. I.
Yamilov
,
J. Math. Phys.
38
,
6648
6674
(
1997
).
3.
B.
Fuchssteiner
and
A. S.
Fokas
,
Physica D
4
,
47
66
(
1981
).
4.
A. S.
Fokas
,
Stud. Appl. Math.
77
,
253
299
(
1987
).
5.
B.
Fuchssteiner
,
Prog. Theor. Phys.
70
,
1508
1522
(
1983
).
6.
W. X.
Ma
,
J. Phys. A
23
,
2707
2716
(
1990
).
7.
H. H. Chen and Y. C. Lee, in Advances in Nonlinear Waves, Research Notes in Mathematics 111, edited by L. Debnath (Pitman, Boston, 1985), pp. 233–239.
8.
A. Y.
Orlov
and
E. I.
Schulman
,
Lett. Math. Phys.
12
,
171
179
(
1986
).
9.
Y. S.
Li
and
G. C.
Zhu
,
J. Phys. A
19
,
3713
3725
(
1986
).
10.
W. X.
Ma
,
Phys. Lett. A
179
,
179
185
(
1993
);
Proceedings of the 21st International Conference on the Differential Geometry Methods in Theoretical Physics, edited by M. L. Ge (World Scientific, Singapore, 1993), pp. 535–538;
W. X.
Ma
,
J. Phys. A
25
,
L719
L726
(
1992
).
11.
F.
Calogero
and
A.
Degasperis
,
Lett. Nuovo Cimento
22
,
420
424
(
1978
).
12.
W. L.
Chan
and
Y. K.
Zheng
,
Lett. Math. Phys.
14
,
293
301
(
1987
).
13.
W.
Oevel
,
H. W.
Zhang
,
B.
Fuchssteiner
, and
O.
Ragnisco
,
J. Math. Phys.
30
,
2664
2670
(
1989
).
14.
W.
Oevel
,
B.
Fuchssteiner
, and
H. W.
Zhang
,
Prog. Theor. Phys.
81
,
294
308
(
1989
).
15.
H. W.
Zhang
,
G. Z.
Tu
,
W.
Oevel
, and
B.
Fuchssteiner
,
J. Math. Phys.
32
,
1908
1918
(
1991
).
16.
M. J.
Ablowitz
and
J. F.
Ladik
,
J. Math. Phys.
16
,
598
603
(
1975
);
M. J.
Ablowitz
and
J. F.
Ladik
,
J. Math. Phys.
17
,
1011
1018
(
1976
).
17.
D.
Levi
,
M.
Bruschi
, and
O.
Ragnisco
,
Nuovo Cimento A
58
,
56
66
(
1980
).
18.
M.
Bruschi
,
D.
Levi
, and
O.
Ragnisco
,
J. Math. Phys.
22
,
2463
2471
(
1981
).
19.
M.
Bruschi
and
O.
Ragnisco
,
Lett. Nuovo Cimento
31
,
492
496
(
1981
).
20.
W. X.
Ma
,
J. Phys. A
26
,
2573
2582
(
1993
).
21.
W. X.
Ma
,
J. Phys. A
25
,
5329
5343
(
1992
).
22.
W. X.
Ma
and
F. K.
Guo
,
Int. J. Theor. Phys.
36
,
697
704
(
1997
).
23.
B.
Fuchssteiner
,
Nonlinear Anal. TMA
3
,
849
862
(
1979
).
24.
F.
Magri
,
J. Math. Phys.
19
,
1156
1162
(
1978
).
25.
I. M.
Gel’fand
and
I. Y.
Dorfman
,
Funct. Anal. Appl.
13
,
248
262
(
1979
).
26.
W. X.
Ma
,
Chin. Sci. Bull.
38
,
2025
2031
(
1993
).
27.
W. X.
Ma
and
W.
Strampp
,
Phys. Lett. A
185
,
277
286
(
1994
).
28.
V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la Vie (Gauthier-Villars, Paris, 1931).
29.
O. I.
Bogoyavlensky
,
Phys. Lett. A
134
,
34
38
(
1988
);
O. I.
Bogoyavlensky
,
Math. USSR Izv.
31
,
435
454
(
1988
).
30.
G. Z.
Tu
,
J. Phys. A
23
,
3903
3922
(
1990
).
31.
B. G. Kupershmidt, “Discrete Lax equations and differential-difference calculus,” Asterisque, 123 (Soc. Math. France, Paris, 1985).
32.
M. Toda, Theory of Nonlinear Lattices, 2nd enl. ed. (Springer-Verlag, Berlin, 1989).
33.
Y. T.
Wu
and
X. G.
Geng
,
J. Math. Phys.
37
,
2338
2345
(
1996
).
34.
M.
Blaszak
and
K.
Marciniak
,
J. Math. Phys.
35
,
4661
4682
(
1994
).
35.
B. Fuchssteiner and W. X. Ma, “An approach to master symmetries of lattice equations,” in Symmetries and Integrability of Difference Equations, edited by P. A. Clarkson and F. W. Nijhoff (Cambridge University Press, London, 1999).
36.
Y.
Cheng
and
Y. S.
Li
,
Chin. Sci. Bull.
36
,
1428
1433
(
1991
).
37.
W. X.
Ma
,
J. Math. Phys.
33
,
2464
2476
(
1992
).
38.
B.
Fuchssteiner
,
S.
Ivanov
, and
W.
Wiwianka
,
Math. Comput. Modell.
25
,
91
100
(
1997
).
39.
I. Y.
Cherdantsev
and
R. I.
Yamilov
,
Physica D
87
,
140
144
(
1995
).
40.
M.
Bruschi
and
O.
Ragnisco
,
J. Math. Phys.
24
,
1414
1421
(
1983
).
41.
O.
Ragnisco
and
P. M.
Santini
,
Inverse Probl.
6
,
441
452
(
1990
);
M
Bruschi
,
O.
Ragnisco
,
P. M.
Santini
, and
G. Z.
Tu
,
Physica D
49
,
273
294
(
1991
).
42.
M.
Bruschi
and
O.
Ragnisco
,
Phys. Lett. A
129
,
21
25
(
1988
).
43.
W. Oevel, in Nonlinear Physics: Theory and Experiment, edited by E. Alfinito, M. Boiti, L. Martina, and F. Pempinelli (World Scientific, Singapore, 1996), pp. 223–240.
44.
C.
Morosi
and
L.
Pizzocchero
,
J. Math. Phys.
37
,
4484
4513
(
1996
).
45.
D.
Levi
and
P.
Winternitz
,
Phys. Lett. A
152
,
335
338
(
1991
);
D.
Levi
and
P.
Winternitz
,
J. Math. Phys.
34
,
3713
3730
(
1993
).
46.
Yu. B.
Suris
,
J. Phys. A
29
,
451
46
(
1996
);
Yu. B.
Suris
,
J. Math. Phys.
37
,
3982
3996
(
1996
).
47.
V. G.
Papageorgiou
,
F. W.
Nijhoff
and
H. W.
Capel
,
Phys. Lett. A
147
,
106
114
(
1990
);
H. W.
Capel
,
F. W.
Nijhoff
, and
V. G.
Papageorgiou
,
Phys. Lett. A
155
,
377
387
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.