An algebraic structure related to discrete zero curvature equations is established. It is used to give an approach for generating master symmetries of the first degree for systems of discrete evolution equations and an answer to why there exist such master symmetries. The key of the theory is to generate nonisospectral flows from the discrete spectral problem associated with a given system of discrete evolution equations. Three examples are given.
REFERENCES
1.
A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, in What is Integrability?, edited by V. E. Zakhalov (Springer-Verlag, Berlin, 1991), pp. 115–184.
2.
3.
4.
5.
6.
7.
H. H. Chen and Y. C. Lee, in Advances in Nonlinear Waves, Research Notes in Mathematics 111, edited by L. Debnath (Pitman, Boston, 1985), pp. 233–239.
8.
A. Y.
Orlov
and E. I.
Schulman
, Lett. Math. Phys.
12
, 171
–179
(1986
).9.
10.
Proceedings of the 21st International Conference on the Differential Geometry Methods in Theoretical Physics, edited by M. L. Ge (World Scientific, Singapore, 1993), pp. 535–538;
11.
F.
Calogero
and A.
Degasperis
, Lett. Nuovo Cimento
22
, 420
–424
(1978
).12.
13.
W.
Oevel
, H. W.
Zhang
, B.
Fuchssteiner
, and O.
Ragnisco
, J. Math. Phys.
30
, 2664
–2670
(1989
).14.
W.
Oevel
, B.
Fuchssteiner
, and H. W.
Zhang
, Prog. Theor. Phys.
81
, 294
–308
(1989
).15.
H. W.
Zhang
, G. Z.
Tu
, W.
Oevel
, and B.
Fuchssteiner
, J. Math. Phys.
32
, 1908
–1918
(1991
).16.
M. J.
Ablowitz
and J. F.
Ladik
, J. Math. Phys.
17
, 1011
–1018
(1976
).17.
D.
Levi
, M.
Bruschi
, and O.
Ragnisco
, Nuovo Cimento A
58
, 56
–66
(1980
).18.
M.
Bruschi
, D.
Levi
, and O.
Ragnisco
, J. Math. Phys.
22
, 2463
–2471
(1981
).19.
20.
21.
22.
23.
24.
25.
I. M.
Gel’fand
and I. Y.
Dorfman
, Funct. Anal. Appl.
13
, 248
–262
(1979
).26.
27.
28.
V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la Vie (Gauthier-Villars, Paris, 1931).
29.
30.
31.
B. G. Kupershmidt, “Discrete Lax equations and differential-difference calculus,” Asterisque, 123 (Soc. Math. France, Paris, 1985).
32.
M. Toda, Theory of Nonlinear Lattices, 2nd enl. ed. (Springer-Verlag, Berlin, 1989).
33.
34.
35.
B. Fuchssteiner and W. X. Ma, “An approach to master symmetries of lattice equations,” in Symmetries and Integrability of Difference Equations, edited by P. A. Clarkson and F. W. Nijhoff (Cambridge University Press, London, 1999).
36.
37.
38.
B.
Fuchssteiner
, S.
Ivanov
, and W.
Wiwianka
, Math. Comput. Modell.
25
, 91
–100
(1997
).39.
40.
41.
M
Bruschi
, O.
Ragnisco
, P. M.
Santini
, and G. Z.
Tu
, Physica D
49
, 273
–294
(1991
).42.
43.
W. Oevel, in Nonlinear Physics: Theory and Experiment, edited by E. Alfinito, M. Boiti, L. Martina, and F. Pempinelli (World Scientific, Singapore, 1996), pp. 223–240.
44.
45.
46.
47.
V. G.
Papageorgiou
, F. W.
Nijhoff
and H. W.
Capel
, Phys. Lett. A
147
, 106
–114
(1990
);H. W.
Capel
, F. W.
Nijhoff
, and V. G.
Papageorgiou
, Phys. Lett. A
155
, 377
–387
(1991
).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.