This work is devoted to the investigation of the quantum mechanical systems on the two-dimensional hyperboloid which admits separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C. P. Boyer, E. G. Kalnins, and P. Winternitz [J. Math. Phys. 24, 2022 (1983)], which have not yet been studied. We give an example of an interbasis expansion and work out the structure of the quadratic algebra generated by the integrals of motion.

1.
C. P.
Boyer
,
E. G.
Kalnins
, and
P.
Winternitz
, “
Completely integrable relativistic Hamiltonian systems and separation of variables in Hermitian hyperbolic spaces
,”
J. Math. Phys.
24
,
2022
(
1983
).
2.
C.
Grosche
,
G. S.
Pogosyan
, and
A. N.
Sissakian
, “
Path integral approach to superintegrable potentials. The two-dimensional hyperboloid
,”
Phys. Part. Nuclei
27
,
244
(
1996
).
3.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
, “
Superintegrability on the two dimensional hyperboloid
,”
J. Math. Phys.
38
,
5416
(
1997
).
4.
P.
Winternitz
,
I.
Lukac
, and
Ya. A.
Smorodinskii
, “
Quantum numbers in the little groups of the Pioncaré group
,”
Sov. J. Nucl. Phys.
7
,
139
(
1968
).
5.
E. G.
Kalnins
and
W.
Miller
, Jr.
, “
Lie theory and separation of variables, 4: The groups SO(2,1) and SO(3)
,”
J. Math. Phys.
15
,
1263
(
1974
).
6.
M. N.
Olevskiı̆
, “
Triorthogonal systems in spaces of constant curvature in which the equation Δ2u+λu=0 allows the complete separation of variables
,”
Math. Sb.
27
,
379
(
1950
) (in Russian).
7.
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory (Pergamon, Oxford, 1977).
8.
Higher Transcendental Functions edited by A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (McGraw–Hill, New York, 1953), Vols. I and II.
9.
A.
Frank
and
K. B.
Wolf
, “
Lie Algebras for systems with mixed spectra. I. The scattering Pöschl–Teller potential
,”
J. Math. Phys.
26
,
973
(
1985
).
10.
A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of Discrete Variables (Nauka, Leningrad, 1985).
11.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
G. S.
Pogosyan
, “
Superintegrability and associated polynomial solutions. Euclidean space and the sphere in two dimensions
,”
J. Math. Phys.
37
,
6439
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.