We study spectral properties of Harper-like models by algebraic and combinatorial methods and derive sufficient conditions for the existence of spectral gaps with qualitative estimates. For this class the Chambers relation holds and we obtain an analytic expression for the representation dependent part. Models corresponding to the rectangular and triangular lattice are studied. In the second case we show that one class of spectral gaps is open for magnetic fields with “rational magnetic flux per unit cell.” A quantitative estimate for the gap widths is given for the anisotropic case and for “irrational magnetic flux” fulfilling some Liouville condition the spectrum is a Cantor set.

1.
R.
Rammal
and
J.
Bellissard
, “
An algebraic semiclassical approach to Bloch electrons in a magnetic field
,”
J. Phys. (France)
51
,
1803
1830
(
1990
).
2.
J.
Bellissard
,
A.
van Elst
, and
H.
Schulz-Baldes
, “
The noncommutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
,
5373
5451
(
1994
).
3.
D.
Hofstadter
, “
The energy-levels of Bloch electrons in rational and irrational magnetic fields
,”
Phys. Rev. B
14
,
2239
2249
(
1976
).
4.
Y. Last, “Almost everything about the almost Mathieu operator. I, in Proceedings of the XIth International Conference of Mathematical Physics, Paris, edited by D. Iagolnitzer (Int. Press, Boston, 1995), pp. 366–372.
5.
S. Jitomirskaya and Y. Last, “Anderson localization for the almost Mathieu equation. III. Semiuniform localization, continuity of gaps, and measure of the spectrum,” mp-arc 97-426, 1997.
6.
B.
Helffer
and
J.
Sjöstrand
, “
Semiclassical analysis for Harpers equation. III
,”
Mém. SMF
39
,
117
:
4
(
1989
).
7.
F.
Claro
and
G.
Wannier
, “
Magnetic subband structure of electrons in hexagonal lattices
,”
Phys. Rev. B
19
,
6068
6074
(
1979
).
8.
J.
Bellissard
,
Ch.
Kreft
, and
R.
Seiler
, “
Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by algebraic and numerical methods
,”
J. Phys. A
24
,
2329
2353
(
1991
).
9.
P.
Kerdelhué
, “
Equation de Schrödinger Magnétique Périodique avec Symétrie d’Ordre Six: Mesure du spectre. II
,”
Ann. Inst. Henri Poincaré: Phys. Theor.
62
,
181
209
(
1995
).
10.
M.
Choi
,
G.
Elliott
, and
N.
Yui
, “
Gauss polynomials and the rotation algebra
,”
Invent. Math.
99
,
225
246
(
1990
).
11.
A.
Janner
and
T.
Janssen
, “
Electromagnetic compensating gauge transformations
,”
Physica (Amsterdam)
53
,
1
27
(
1971
).
12.
J.
Zak
, “
Magnetic translation group
,”
Phys. Rev. A
134
,
1602
1606
(
1964
);
see also
J.
Schwinger
, “
Unitary operator bases
,”
Proc. Natl. Acad. Sci.
46
,
570
573
(
1960
).
13.
Ch.
Kreft
and
R.
Seiler
, “
Models of the Hofstadter-type
,”
J. Math. Phys.
37
,
5207
5243
(
1996
).
14.
M. P.
Schützenberg
, “
Une interprétation de certaines solutions de l’equation fonctionelle: F(x+y)=f(x)f(y),
C.R. Acad. Sci. Paris
236
,
352
353
(
1953
).
15.
In this context q is a complex number and one is usually interested in values between 0 and 1. Since q denoted here an integer, we “γ2 deform” to prevent equivocalness.
16.
R.
Askey
, “
Extensions of hermite polynomials and other orthogonal polynomials
,”
SIAM news
5
,
14
(
1994
).
17.
J. Bellissard, “Noncommutative methods in semiclassical analysis,” in Transition to Chaos in Classical and Quantum Mechanics, Montecatini Terme, Italy, 6–13 July 1991, edited by S. Graffi (Springer, Berlin, 1994).
18.
W. G.
Chambers
, “
Linear-network model for magnetic breakdown in two dimensions
,”
Phys. Rev.
140
,
A135
A143
(
1965
).
19.
The factor qσ(n,m)+q2m1m2 has a geometric interpretation (Sec. II), it is twice the area of the rectangle with vertices 0,n,n+(qm1,0),n+qm.
20.
G. A.
Elliott
, “
Gaps in the spectrum of an almost periodic Schrödinger operator
,”
C. R. Math. Rep. Acad. Sci. Canada
4
,
255
259
(
1982
).
21.
J.
Avron
,
P.
van Mouche
, and
B.
Simon
, “
On the measure of the spectrum for the almost Mathieu operator
,”
Commun. Math. Phys.
132
,
103
118
(
1990
).
22.
J.
Bellissard
, “
Lipshitz continuity of gap boundaries for Hofstadter-like spectra
,”
Commun. Math. Phys.
160
,
599
613
(
1993
).
23.
P. van Mouche (private communication).
24.
R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Research Notes in Mathematics Vol. 162 (Longman, London, 1987).
25.
J.
Bellissard
and
B.
Simon
, “
Cantor spectrum for the almost Mathieu equation
,”
J. Funct. Anal.
48
,
408
419
(
1982
).
26.
P.
van Mouche
, “
The coexistence problem for the discrete Mathieu operator
,”
Commun. Math. Phys.
122
,
23
33
(
1989
).
27.
G. H.
Wannier
,
G. M.
Obermair
, and
R.
Ray
, “
Magnetoelectronic density of states for a model crystal
,”
Phys. Status Solidi (b)
93
,
337
(
1979
).
28.
Since ΠzHtri is self-adjoint, g(Htri)=0 if and only if g(Htri*)*=0, hence it is no restriction to consider polynomials with real coefficients.
This content is only available via PDF.
You do not currently have access to this content.