An iterative map of the unit disk in the complex plane is used to explore certain aspects of self-dual, four-dimensional gauge fields (quasi)periodic in the Euclidean time. These fields are characterized by two topological numbers and contain standard instantons and monopoles as different limits. The iterations do not correspond directly to a discretized time evolution of the gauge fields. They are implemented in an indirect fashion. First, (t,r,θ,φ) being the standard coordinates, the (r,t) half-plane is mapped on the unit disk in an appropriate way. This provides an (r,t) parametrization of Z0, the starting point of the iterations and makes the iterates increasingly complex functions of r and t. These are then incorporated as building blocks in the generating function of the fields. We explain in what sense and to what extent some remarkable features of our map (indicated in the title) are thus carried over into the continuous time development of the fields. Special features for quasiperiodicity are studied. Spinor solutions and propagators are discussed from the point of view of the mapping. Several possible generalizations are indicated. Some broader topics are also discussed.

1.
A.
Chakrabarti
, “
Periodic generalizations of static, self-dual SU(2) gauge fields
,”
Phys. Rev. D
35
,
696
(
1987
).
2.
A.
Chakrabarti
, “
Spinors in periodic self-dual gauge field backgrounds
,”
J. Math. Phys.
29
,
481
(
1988
).
3.
A.
Chakrabarti
, “
Propagators in periodic gauge field backgrounds
,”
Phys. Lett. B
210
,
181
(
1988
).
4.
A.
Chakrabarti
, “
Quasiperiodic instantons
,”
Phys. Rev. D
38
,
3219
(
1988
).
5.
A.
Chakrabarti
and
C.
Roiesnel
, “
Periodic and quasiperiodic SU(N) instantons
,”
Phys. Rev. D
39
,
2381
(
1989
).
6.
A.
Chakrabarti
, “
Antiperiodic spinor zero modes for periodic SU(2) instanton backgrounds
,”
Phys. Lett. B
227
,
137
(
1989
).
7.
A.
Chakrabarti
, “
Linear fluctuations of periodic and quasiperiodic instantons
,”
Phys. Rev. D
40
,
2684
(
1989
).
8.
A. Chakrabarti, “Quasiperiodic gauge fields: Poincaré sections, annular maps and irrational winding numbers (3 pages, unpublished talk presented at WIGSYM, Oxford, 1993).
9.
R. L. Devaney, An Introduction to Chaotic Dynamical Systems (Benjamin, New York, 1986).
10.
P. Bak, T. Bohr, and M. H. Jensen, Circle Maps, Mode-Locking and Chaos, Directions in Chaos Vol. 2, edited by H. Bai-lin (World Scientific, Singapore, 1988).
11.
T.
Geisel
, “
Quasiperiodicity versus mixing instability in a kicked quantum system
,”
Phys. Rev. A
41
,
2989
(
1990
).
12.
J. P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
(
1985
).
13.
E.
Witten
, “
Some exact multipseudoparticle solutions of classical Yang–Mills theory
,”
Phys. Rev. Lett.
38
,
121
(
1977
).
14.
R.
Jackiw
,
C.
Nohl
, and
C.
Rebbi
, “
Conformal properties of pseudoparticle configurations
,”
Phys. Rev. D
15
,
1642
(
1977
).
15.
L. S.
Brown
and
D. B.
Creamer
, “
Vacuum polarization about instantons
,”
Phys. Rev. D
18
,
3695
(
1978
).
16.
C.
Roiesnel
and
A.
Chakrabarti
, “
Geometry of linear pairs for self-dual gauge fields
,”
J. Math. Phys.
31
,
1643
(
1990
).
17.
A.
Chakrabarti
, “
Construction of hyperbolic monopoles
,”
J. Math. Phys.
27
,
340
(
1986
).
18.
A.
Chakrabarti
, “
Classical solutions of Yang–Mills fields (selected topics)
,”
Fortschr. Phys.
35
,
1
(
1987
).
19.
T. S. Biró, S. G. Matinyan, and B. Müller, Chaos and Gauge Field Theory (World Scientific, Singapore, 1994).
20.
C.
Mukku
,
M. S.
Sriram
,
J.
Segar
,
B. A.
Bambah
, and
S.
Lakshmibala
, “
Order-chaos transition in field theories with topological terms: A dynamical system approach
, hep-th/9610071, Oct. 1996.
21.
S.-J.
Chang
, “
Classical Yang–Mills solutions and iterative maps
,”
Phys. Rev. D
29
,
259
(
1984
).
22.
S. G.
Matinyan
,
E. B.
Prokhorenko
, and
G. K.
Savvidy
, “
Non-integrability of time dependent spherically symmetric Yang–Mills equations
,”
Nucl. Phys. B
298
,
414
(
1988
).
23.
B. K.
Harrington
and
H. K.
Shepard
, “
Periodic Euclidean solutions and the finite temperature Yang–Mills gas
,”
Phys. Rev. D
17
,
2122
(
1978
).
24.
B. K.
Harrington
and
H. K.
Shepard
, “
Thermodynamics of Yang–Mills gas
,”
Phys. Rev. D
18
,
2990
(
1978
).
25.
D. J.
Gross
,
R. D.
Pisarski
, and
L. G.
Yaffe
, “
QCD and instantons at finite temperature
,”
Rev. Mod. Phys.
53
,
43
(
1981
).
26.
M. F.
Atiyah
,
N. J.
Hitchin
,
V. G.
Drinfeld
, and
Yu. I.
Manin
, “
Construction of instantons
,”
Phys. Lett.
65A
,
185
(
1978
).
27.
M. F. Atiyah, Geometry of Yang–Mills Fields, Fermi Lectures (Scuola Normale Sup., Pisa, 1979).
28.
E.
Corrigan
and
P.
Goddard
, “
Construction of instanton and monopole solutions and reciprocity
,”
Ann. Phys. (N.Y.)
154
,
253
(
1984
).
29.
W. Nahm, The Construction of all Self-Dual Multimonopoles by the ADHM Method, Monopoles in Quantum Field Theory, edited by N. Craigie (World Scientific, Singapore, 1982), p. 87.
30.
W.
Nahm
, “
Self-dual monopoles and calorons,” edited by G. Denardo
[
Lect. Notes Phys.
201
,
189
(
1984
)].
31.
K.
Lee
, “
Instantons and magnetic monopoles on R3×S1 with arbitrary gauge groups
,” hep-th/9802012.
32.
K.
Lee
and
C.
Lu
, “
SU(2) calorons and magnetic monopoles
,” hep-th/9802108.
33.
T. C.
Kraan
and
P.
van Baal
, “
Exact T-duality between calorons and Taub-NUT spaces
,”
Phys. Lett. B
284
,
268
(
1998
);
T. C.
Kraan
and
P.
van Baal
, hep-th/9802049.
34.
T. C.
Kraan
and
P.
van Baal
, “
Periodic instantons with nontrivial holonomy
,” hep-th/9805168.
35.
K.
Lee
and
P.
Yi
, “
Dyons in N=4 supersymmetric theories and three-pronged strings
,” hep-th/9804174 v2.
This content is only available via PDF.
You do not currently have access to this content.