The computation of the index of the Hessian of the action functional in semi-Riemannian geometry at geodesics with two variable endpoints is reduced to the case of a fixed final endpoint. Using this observation, we give an elementary proof of the Morse index theorem for Riemannian geodesics with two variable endpoints, in the spirit of the original Morse proof. This approach reduces substantially the effort required in the proofs of the theorem given previously [Ann. Math. 73(1), 49–86 (1961); J. Diff. Geom 12, 567–581 (1977); Trans. Am. Math. Soc. 308(1), 341–348 (1988)]. Exactly the same argument works also in the case of timelike geodesics between two submanifolds of a Lorentzian manifold. For the extension to the lightlike Lorentzian case, just minor changes are required and one obtains easily a proof of the focal index theorem previously presented [J. Geom. Phys. 6(4), 657–670 (1989)].

1.
J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry (Marcel Dekker, New York, 1996).
2.
J.
Beem
and
P.
Ehrlich
, “
A Morse Index Theorem for Null Geodesics
,”
Duke Math. J.
46
,
561
569
(
1979
).
3.
W.
Ambrose
, “
The Index Theorem in Riemannian Geometry
,”
Ann. Math.
73
(
1
),
49
86
(
1961
).
4.
J.
Bolton
, “
The Morse Index Theorem in the case of Two Variable Endpoints
,”
J. Diff. Geom.
12
,
567
581
(
1977
).
5.
D.
Kalish
, “
The Morse Index Theorem where the Ends are Submanifolds
,”
Trans. Am. Math. Soc.
308
(
1
),
341
348
(
1988
).
6.
T.
Takahashi
, “
Correction to The Index Theorem In Riemannian Geometry by W. Ambrose
Ann. Math.
80
,
538
541
(
1964
).
7.
N.
Hingston
and
D.
Kalish
, “
The Morse Index Theorem in the Degenerate Endmanifold Case
,”
Proc. Am. Math. Soc.
118
(
2
),
663
668
(
1993
).
8.
P. E.
Ehrlich
and
S.
Kim
, “
A Focal Index Theorem for Null Geodesics
,”
J. Geom. Phys.
6
(
4
),
657
670
(
1989
).
9.
A. D.
Helfer
, “
Conjugate Points on Spacelike Geodesics or Pseudo-Self-Adjoint Morse-Sturm-Liouville Systems
,”
Pac. J. Math.
164
(
2
),
321
340
(
1994
).
10.
H. M.
Edwards
, “
A Generalized Sturm Theorem
,”
Ann. Math.
80
,
22
57
(
1964
).
11.
S.
Smale
, “
On the Morse Index Theorem
,”
J. Math. Mech.
14
,
1049
1056
(
1965
).
12.
J. Milnor, Morse Theory (Princeton U. P., Princeton, 1969).
13.
M. do Carmo, Riemannian Geometry (Birkhäuser, Boston, 1992).
14.
S. G.
Harris
, “
A Triangle Comparison Theorem for Lorentz Manifolds
,”
Indiana Univ. Math. J.
31
(
3
),
289
308
(
1982
).
15.
B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic, New York, 1983).
16.
V.
Benci
,
F.
Giannoni
, and
A.
Masiello
, “
Some Properties of the Spectral Flow in Semiriemannian Geometry
,”
J. Geom. Phys.
27
,
267
280
(
1998
).
17.
F.
Giannoni
and
P.
Piccione
, “
An Intrinsic Approach to the Geodesical Connectedness of Stationary Lorentzian Manifolds
,”
Commun. An. Geom.
7
(
1
),
157
197
(
1999
).
18.
A. Masiello, Variational Methods in Lorentzian Geometry, Pitman Research Notes in Mathematics Vol. 309 (Longman, London 1994).
19.
F. Giannoni, A. Masiello, P. Piccione, and D. Tausk, “A Generalized Index Theorem for Morse-Sturm Systems and Applications to semi-Riemannian Geometry,” preprint 1999 (LANL MATH. DG/9908056).
This content is only available via PDF.
You do not currently have access to this content.