We introduce a family of local deformations for meromorphic connections on in the neighborhood of a higher rank (simple) singularity. Following the scheme in Malgrange [Mathematique et Physique, Progress in Mathematics (Birkhäuser, Boston, 1983), Vol. 37, pp. 381–400, ibid., pp. 401–426; ibid., pp. 427–438] we use these local models to prove that the zeros of the tau function, introduced by Jimbo, Miwa, and Ueno in their pioneering work on “Birkhoff” deformations at irregular singular points [Physica D 2, 306–352; 2, 407–448 (1981); 4, 26–46 (1983); Publ. RIMS Kyoto Univ. 17-2, 703–721 (1981)], occur at precisely those points in the deformation space at which a certain Birkhoff–Riemann–Hilbert problem fails to have a solution.
REFERENCES
1.
D. V. Anosov and A. A. Bolibruch, “The Riemann–Hilbert problem,” Aspects of Mathematics: E (Vieweg and Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1994), Vol. 22.
2.
L.
Schlesinger
, “Über eine klasse von differentialsystem beliebiger ordnung mit festen kritischen punkten
,” J. Reine Angew. Math.
141
, 96
–145
(1912
).3.
B. Malgrange, “Sur les déformations isomonodromiques, I. Singularités régulières,” in Ref. 13, pp. 401–426.
4.
G. Helmink, “Deformations of connections, the Riemann–Hilbert problem and τ-functions,” in Computational and Combinatorial Methods in System Theory, Elsevier Science Publishers B.V., edited by C. I. Byrnes and A. Lindquist (North Holland, New York, 1986), pp. 75–89.
5.
E.
Faddell
and L.
Neuwirth
, “Configuration spaces
,” Math. Scand.
10
, 111
–118
(1962
).6.
H. Grauert and R. Remmert, Theory of Stein Spaces (Springer-Verlag, Berlin, 1979).
7.
P. Deligne, “Equations differéntielles à points singulieres réguliers,” Springer Lecture Notes (Springer-Verlag, Berlin, 1970), Vol. 163.
8.
M.
Jimbo
, T.
Miwa
, and K.
Ueno
, “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients I, General theory and tau function
,” Physica D
2
, 306
–352
(1981
);M.
Jimbo
and T.
Miwa
, “Monodromy preserving deformations of linear ordinary differential equations II
,” Physica D
2
, 407
–448
(1981
);M.
Jimbo
and T.
Miwa
, “Monodromy preserving deformations of linear ordinary differential equations III
,” Physica D
4
, 26
–46
(1983
);T.
Miwa
, “Painlevé property of monodromy preserving equations and the analyticity of τ-function
,” Publ. RIMS Kyoto Univ.
17-2
, 703
–721
(1981
).9.
G. D.
Birkhoff
, “The generalized Riemann problem for linear differential equations
,” Proc. Am. Acad. Arts Sci.
49
, 531
–568
(1913
).10.
V. S.
Varadarajan
, “Linear meromorphic differential equations: a modern point of view
,” Bull. Am. Math. Soc.
33-1
, 1
–41
(1996
).11.
K. Ueno, “Monodromy preserving deformations of linear differential equations with irregular singular points,” RIMS preprint 301, 1979.
12.
W. Wasow, Asymptotic Expansions for Ordinary Differential Equations (Interscience, New York, 1965).
13.
B. Malgrange, “La classification des connections irrégulières à une variable.” in Mathématique et Physique, Progress in Mathematics, edited by L. Boutet de Monvel, A. Douady, and J-L. Verdier (Birkhäuser, Boston, 1983), Vol. 37, pp. 381–400.
14.
B. Malgrange, “Sur les déformations isomonodromiques, II. Singularités irrégulières,” in Ref. 13, pp. 427–438.
15.
H.
Flaschka
and A.
Newell
, “Monodromy and spectrum preserving deformations I
,” Commun. Math. Phys.
76
, 65
–116
(1980
).16.
17.
D. G.
Babbitt
and V. S.
Varadarajan
, “Local moduli for meromorphic differential equations
,” Astérisque
169–170
, 1
–217
(1989
).18.
H.
Grauert
, “Analytische Faserungen über holomorph-vollständigen Räumen
,” Math. Annalen
135
, 263
–273
(1958
).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.