In general, Whitham dynamics involves infinitely many parameters called Whitham times, but in the context of N=2 supersymmetric Yang–Mills theory it can be regarded as a finite system by restricting the number of Whitham times appropriately. For example, in the case of SU(r+1) gauge theory without hypermultiplets, there are r Whitham times and they play an essential role in the theory. In this situation, the generating meromorphic one-form of the Whitham hierarchy on the Seiberg–Witten curve is represented by a finite linear combination of meromorphic one-forms associated with these Whitham times, but it turns out that there are various differential relations among these differentials. Since these relations can be written only in terms of the Seiberg–Witten one-form, their consistency conditions are found to give the Picard–Fuchs equations for the Seiberg–Witten periods.

1.
N.
Seiberg
and
E.
Witten
,
Nucl. Phys. B
431
,
484
(
1994
);
N.
Seiberg
and
E.
Witten
,
Nucl. Phys. B
435
,
129
(
1994
).
2.
A.
Klemm
,
W.
Lerche
,
S.
Yankielowicz
, and
S.
Theisen
,
Phys. Lett. B
344
,
169
(
1995
).
3.
P. C.
Argyres
and
A. E.
Faraggi
,
Phys. Rev. Lett.
74
,
3931
(
1995
).
4.
A.
Hanany
and
Y.
Oz
,
Nucl. Phys. B
452
,
283
(
1995
).
5.
J. A.
Minahan
and
D.
Nemeschansky
,
Nucl. Phys. B
464
,
3
(
1996
).
6.
U. H.
Danielsson
and
B.
Sundborg
,
Phys. Lett. B
358
,
273
(
1995
).
7.
U. H.
Danielsson
and
B.
Sundborg
,
Phys. Lett. B
370
,
83
(
1996
).
8.
A.
Hanany
,
Nucl. Phys. B
466
,
85
(
1996
).
9.
A.
Brandhuber
and
K.
Landsteiner
,
Phys. Lett. B
358
,
73
(
1995
).
10.
P. C.
Argyres
,
M. R.
Plesser
, and
A. D.
Shapere
,
Phys. Rev. Lett.
75
,
1699
(
1995
).
11.
M.
Alishahiha
,
F.
Ardalan
, and
F.
Mansouri
,
Phys. Lett. B
381
,
446
(
1996
).
12.
K.
Landsteiner
,
J. M.
Pierre
, and
S. B.
Giddings
,
Phys. Rev. D
55
,
2367
(
1997
).
13.
M. R.
Abolhasani
,
M.
Alishahiha
, and
A. M.
Ghezelbash
,
Nucl. Phys. B
480
,
279
(
1996
).
14.
E. J.
Martinec
and
N. P.
Warner
,
Nucl. Phys. B
459
,
97
(
1996
).
15.
W.
Lerche
and
N. P.
Warner
,
Phys. Lett. B
423
,
79
(
1998
).
16.
T.
Eguchi
and
S.-K.
Yang
,
Phys. Lett. B
394
,
315
(
1997
).
17.
N.
Seiberg
,
Phys. Lett. B
206
,
75
(
1988
).
18.
A.
Klemm
,
W.
Lerche
, and
S.
Theisen
,
Int. J. Mod. Phys. A
11
,
1929
(
1996
).
19.
K.
Ito
and
S.-K.
Yang
,
Phys. Lett. B
366
,
165
(
1996
).
20.
Y.
Ohta
,
J. Math. Phys.
37
,
6074
(
1996
);
Y.
Ohta
,
J. Math. Phys.
38
,
682
(
1997
).
21.
M.
Matone
,
Phys. Lett. B
357
,
342
(
1995
).
22.
H.
Ewen
,
K.
Förger
, and
S.
Theisen
,
Nucl. Phys. B
485
,
63
(
1997
).
23.
H.
Ewen
and
K.
Förger
,
Int. J. Mod. Phys. A
12
,
4725
(
1997
).
24.
K.
Ito
,
Phys. Lett. B
406
,
54
(
1997
).
25.
A. M.
Ghezelbash
,
Phys. Lett. B
423
,
87
(
1998
).
26.
K.
Ito
and
N.
Sasakura
,
Nucl. Phys. B
484
,
141
(
1997
).
27.
D.
Finnell
and
P.
Pouliot
,
Nucl. Phys. B
453
,
225
(
1995
).
28.
K.
Ito
and
N.
Sasakura
,
Phys. Lett. B
382
,
95
(
1996
).
29.
M. J.
Slater
,
Phys. Lett. B
403
,
57
(
1997
).
30.
N.
Dorey
,
V. V.
Khoze
, and
M. P.
Mattis
,
Phys. Lett. B
388
,
324
(
1996
);
N.
Dorey
,
V. V.
Khoze
, and
M. P.
Mattis
,
Phys. Rev. D
54
,
2921
(
1996
);
N.
Dorey
,
V. V.
Khoze
, and
M. P.
Mattis
,
Phys. Rev. D
54
,
7832
(
1996
).
31.
T.
Harano
and
M.
Sato
,
Nucl. Phys. B
484
,
167
(
1997
).
32.
H.
Aoyama
,
T.
Harano
,
M.
Sato
, and
S.
Wada
,
Phys. Lett. B
388
,
331
(
1996
).
33.
A.
Yung
,
Nucl. Phys. B
485
,
38
(
1997
).
34.
S.
Ryang
,
Phys. Lett. B
365
,
113
(
1996
).
35.
A. M.
Ghezelbash
,
A.
Shafiekhani
, and
M. R.
Abolhasani
,
Mod. Phys. Lett. A
13
,
527
(
1998
).
36.
J. M.
Isidro
,
A.
Mukherjee
,
J. P.
Nunes
, and
H. J.
Schnitzer
,
Nucl. Phys. B
492
,
647
(
1997
);
J. M.
Isidro
,
A.
Mukherjee
,
J. P.
Nunes
, and
H. J.
Schnitzer
,
Nucl. Phys. B
502
,
363
(
1997
);
J. M.
Isidro
,
A.
Mukherjee
,
J. P.
Nunes
, and
H. J.
Schnitzer
,
Int. J. Mod. Phys. A
13
,
233
(
1998
).
37.
M.
Alishahiha
,
Phys. Lett. B
398
,
100
(
1997
);
M.
Alishahiha
,
Phys. Lett. B
418
,
317
(
1998
).
38.
Y.
Ohta
,
J. Math. Phys.
40
,
3211
(
1999
).
39.
A.
Gorsky
,
I.
Krichever
,
A.
Marshakov
,
A.
Mironov
, and
A.
Morozov
,
Phys. Lett. B
355
,
466
(
1995
).
40.
T.
Nakatsu
and
K.
Takasaki
,
Mod. Phys. Lett. A
11
,
157
(
1996
).
41.
A.
Gorsky
,
A.
Marshakov
,
A.
Mironov
, and
A.
Morozov
,
Nucl. Phys. B
527
,
690
(
1998
).
42.
I. M.
Krichever
,
Commun. Math. Phys.
143
,
415
(
1992
).
43.
K.
Ito
and
S.-K.
Yang
,
Phys. Lett. B
415
,
45
(
1997
).
44.
A. Erdélyi, Higher Transcendental Functions (McGraw–Hill, New York, 1966).
45.
T.
Takano
,
Funkcial. Ekvac.
23
,
97
(
1980
).
46.
M.
Kato
,
Funkcial. Ekvac.
38
,
243
(
1995
).
47.
J.
Kaneko
,
Tokyo J. Math.
4
,
35
(
1981
).
48.
K.
Ito
,
C.-S.
Xiong
, and
S.-K.
Yang
,
Phys. Lett. B
441
,
155
(
1998
).
49.
K.
Ito
and
S.-K.
Yang
,
Int. J. Mod. Phys. A
13
,
5373
(
1998
).
50.
E.
Witten
,
Nucl. Phys. B
340
,
281
(
1990
).
51.
R.
Dijkgraaf
and
E.
Witten
,
Nucl. Phys. B
342
,
486
(
1990
).
52.
R.
Dijkgraaf
,
H.
Verlinde
, and
E.
Verlinde
,
Nucl. Phys. B
352
,
59
(
1991
).
53.
A.
Marshakov
,
A.
Mironov
, and
A.
Morozov
,
Phys. Lett. B
389
,
43
(
1996
);
A.
Marshakov
,
A.
Mironov
, and
A.
Morozov
,
Mod. Phys. Lett. A
12
,
773
(
1997
).
54.
A.
Marshakov
,
A.
Mironov
, and
A.
Morozov
, “
More evidence for the WDVV equations in N=2 SUSY Yang-Mills theories
,” hep-th/9701123.
55.
K.
Ito
and
S.-K.
Yang
,
Phys. Lett. B
433
,
56
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.