A simple method is proposed to construct the spectral zeta functions required for calculating the electromagnetic vacuum energy with boundary conditions given on a sphere or on an infinite cylinder. When calculating the Casimir energy in this approach no exact divergencies appear and no renormalization is needed. The starting point of the consideration is the representation of the zeta functions in terms of contour integral, further the uniform asymptotic expansion of the Bessel function is essentially used. After the analytic continuation, needed for calculating the Casimir energy, the zeta functions are presented as infinite series containing the Riemann zeta function with rapidly falling down terms. The spectral zeta functions are constructed exactly for a material ball and infinite cylinder placed in a uniform endless medium under the condition that the velocity of light does not change when crossing the interface. As a special case, perfectly conducting spherical and cylindrical shells are also considered in the same line. In this approach one succeeds, specifically, in justifying, in mathematically rigorous way, the appearance of the contribution to the Casimir energy for cylinder which is proportional to ln(2π).

1.
G.
Plunien
,
B.
Müller
, and
W.
Greiner
,
Phys. Rep.
134
,
664
(
1987
).
2.
V. M.
Mostepanenko
and
N. N.
Trunov
,
Sov. Phys. Usp.
31
,
965
(
1988
).
3.
M.
Bordag
,
E.
Elizalde
,
K.
Kirsten
, and
S.
Leseduarte
,
Phys. Rev. D
56
,
4896
(
1997
).
4.
E.
Elizalde
,
M.
Bordag
, and
K.
Kirsten
,
J. Phys. A
31
,
1743
(
1998
).
5.
M.
Bordag
,
K.
Kirsten
, and
D.
Vassilevich
,
Phys. Rev. D
59
,
085011
(
1999
).
6.
T. H.
Boyer
,
Phys. Rev.
174
,
1764
(
1968
).
7.
E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994).
8.
E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Springer, Berlin, 1995).
9.
K. A. Milton, “Julian Schwinger and the Casimir effect: The reality of zero-point energy,” in The Casimir Effect 50 Years Later, Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, 14–18 September 1998, edited by M. Bordag (World Scientific, Singapore, 1999), pp. 20–36.
10.
B.
Davies
,
J. Math. Phys.
13
,
1324
(
1972
).
11.
R.
Balian
and
B. D.
Duplantier
,
Ann. Phys. (N.Y.)
112
,
165
(
1978
).
12.
K. A.
Milton
,
L. L.
DeRaad
, Jr.
, and
J.
Schwinger
,
Ann. Phys. (N.Y.)
115
,
388
(
1978
).
13.
V. V.
Nesterenko
and
I. G.
Pirozhenko
,
Phys. Rev. D
57
,
1284
(
1998
).
14.
I.
Brevik
,
V. V.
Nesterenko
, and
I. G.
Pirozhenko
,
J. Phys. A
31
,
8661
(
1998
).
15.
K. A.
Milton
,
A. V.
Nesterenko
, and
V. V.
Nesterenko
,
Phys. Rev. D
59
,
105009
(
1999
).
16.
Interest in calculating the Casimir energy of a material ball (or spherical cavity) in an infinite medium is caused, to some extent, by recent attempts to elucidate the mechanism of sonoluminescence and, in particular, by Schwinger’s idea to use here the dynamical Casimir effect (Ref. 9).
17.
J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York, 1941).
18.
If we are considering only outgoing waves it is natural to use the solutions of the Maxwell equations which are finite (or at least do not grow infinitely) in the future. Such solutions should be proportional to exp(−iωt)Hν(1)(ωr) when ω lies in the lower half-plane. For the upper half-plane ω, the solutions describing outgoing waves and finite in the future should contain the factor exp(iωt)Hν(2)(ωr).
19.
M.
Bordag
,
J. Phys. A
28
,
755
(
1995
).
20.
E.
Elizalde
,
S.
Leseduarte
, and
A.
Romeo
,
J. Phys. A
26
,
2409
(
1993
).
21.
S.
Leseduarte
and
A.
Romeo
,
J. Phys. A
27
,
2483
(
1994
).
22.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Appl. Math. Ser. 55 (U.S. GPO, Washington, D.C., 1964) (Dover, New York, reprinted 1972).
23.
I. S. Gradshteijn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed. (Academic, New York, 1994).
24.
K. A.
Milton
and
Y. J.
Ng
,
Phys. Rev. E
55
,
4207
(
1997
);
K. A.
Milton
and
Y. J.
Ng
,
Phys. Rev. E
57
,
5504
(
1998
).
25.
I.
Brevik
and
V. N.
Marachevsky
,
Phys. Rev. D
60
,
085006
(
1999
).
26.
I.
Brevik
,
V. N.
Marachevsky
, and
K. A.
Milton
,
Phys. Rev. Lett.
82
,
3948
(
1999
).
27.
L. L.
DeRaad
, Jr.
and
K.
Milton
,
Ann. Phys. (N.Y.)
136
,
229
(
1981
).
28.
More precisely, in Ref. 15 not only the next term in the UAE (3.13) has been taken into account but also the first 5 terms in the sum in (3.18) were taken exactly instead of using their asymptotics n−3−s. This turns out to be essential for reaching the required precision. However this point is not critical for our consideration because Z3(s) does not need analytic continuation.
29.
P.
Gosdzinski
and
A.
Romeo
,
Phys. Lett. B
441
,
265
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.