After defining cohomologically higher-order BRST and anti-BRST operators for a compact simple algebra 𝒢, the associated higher-order Laplacians are introduced and the corresponding supersymmetry algebra Σ is analyzed. These operators act on the states generated by a set of fermionic ghost fields transforming under the adjoint representation. In contrast with the standard case, for which the Laplacian is given by the quadratic Casimir, the higher-order Laplacians W are not, in general, given completely in terms of the Casimir–Racah operators, and may involve the ghost number operator. The higher-order version of the Hodge decomposition is exhibited. The example of su(3) is worked out in detail, including the expression of its higher-order Laplacian W.

1.
C.
Becchi
,
A.
Rouet
, and
R.
Stora
, “
Renormalization and gauge theories
,”
Ann. Phys. (N.Y.)
98
,
287
321
(
1976
).
2.
I. V. Tyutin, “Gauge invariance in field theory and in statistical mechanics,” Lebedev preprint FIAN #39 (unpublished).
3.
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992).
4.
J.
Gomis
,
J.
Paris
, and
S.
Samuel
, “
Antibracket, antifields and gauge-theory quantization
,”
Phys. Rep.
259
,
1
145
(
1995
).
5.
E.
Witten
, “
A note on the antibracket formalism
,”
Mod. Phys. Lett. A
5
,
487
494
(
1990
).
6.
O. M.
Khurdaverian
and
A. P.
Nersessian
, “
On the geometry of the Batalin–Vilkovisky formalism
,”
Mod. Phys. Lett. A
8
,
2377
2385
(
1993
).
7.
M.
Alexandrov
,
M.
Kontsevich
,
A.
Schwarz
, and
O.
Zaboronsky
, “
The geometry of the master equation and topological quantum field theory
,”
Int. J. Mod. Phys. A
12
,
1405
1430
(
1997
).
8.
A.
Nersessian
, “
Antibracket and non-Abelian equivariant cohomology
,”
Mod. Phys. Lett. A
10
,
3043
3050
(
1995
).
9.
F.
Brandt
,
M.
Henneaux
, and
A.
Wilch
, “
Extended antifield formalism
,”
Nucl. Phys. B
510
,
640
656
(
1998
).
10.
L.
Álvarez-Gaumé
and
L.
Baulieu
, “
The two quantum symmetries associated with a classical symmetry
,”
Nucl. Phys. B
212
,
255
267
(
1983
).
11.
D.
McMullan
, “
Use of ghosts in the description of physical states
,”
Phys. Rev. D
33
,
2501
2503
(
1986
).
12.
J.-L.
Gervais
, “
Group theoretic approach to the string field theory action
,”
Nucl. Phys. B
276
,
339
348
(
1986
).
13.
I.
Bars
and
S.
Yankielowicz
, “
Becchi–Rouet–Stora–Tyutin symmetry, differential geometry, and string field theory
,”
Phys. Rev. D
35
,
3878
3889
(
1987
).
14.
J. W.
van Holten
, “
The BRST complex and the cohomology of compact Lie algebras
,”
Nucl. Phys. B
339
,
158
176
(
1990
).
15.
L.
Baulieu
, “
On the symmetries of topological quantum field theories
,”
Int. J. Mod. Phys. A
50
,
4483
4500
(
1995
).
16.
H. S.
Yang
and
B.-H.
Lee
, “
Lie algebra cohomology and group structure of gauge theories
,”
J. Math. Phys.
37
,
6106
6120
(
1996
).
17.
The Killing tensor kij is proportional to δij since 𝒢 is compact and semisimple.
18.
T.
Kawai
, “
Remarks on a class of BRST operators
,”
Phys. Lett. B
168
,
355
359
(
1986
).
19.
J. M. Figueroa-O’Farrill and T. Kimura, “Some remarks on BRST cohomology, Kähler algebra and ‘no-ghost’ theorems,” ITP-SP-88-34, unpublished.
20.
L.
Bonora
and
P.
Cotta-Ramusino
, “
Some remarks on BRST transformations, anomalies and the cohomology of the Lie algebra of the group gauge transformations
,”
Commun. Math. Phys.
87
,
589
603
(
1983
).
21.
G.
Racah
, “
Sulla caratterizzazione delle rappresentazioni irreducibili dei gruppi semi-simplici di Lie
,”
Lincei-Rend. Sc. fis. mat. e nat.
VIII
,
108
112
(
1950
),
G.
Racah
, Princeton lectures, CERN-61-8 [reprinted in
Ergeb. Exact Naturwiss.
37
,
28
84
(
1965
) (Springer-Verlag, Berlin, 1965)].
22.
I. M.
Gel’fand
, “
The center of an infinitesimal group ring
,”
Mat. Sb.
26
,
103
112
(
1950
) (english translation by Los Alamos Sci. Lab., ACE-TR-6133, 1963).
23.
A. M.
Perelomov
and
V. S.
Popov
, “
Casimir operators for semisimple groups
,”
Math. USSR Izv.
2
,
1313
1335
(
1968
).
24.
J. A.
de Azcárraga
,
A. J.
Macfarlane
,
A. J.
Mountain
, and
J. C.
Pérez Bueno
, “
Invariant tensors for simple groups
,”
Nucl. Phys. B
510
,
657
687
(
1998
).
25.
J. A.
de Azcárraga
and
J. C.
Pérez Bueno
, “
Higher-order simple Lie algebras
,”
Commun. Math. Phys.
184
,
669
681
(
1997
).
26.
T.
Lada
and
J.
Stasheff
, “
Introduction to SH Lie algebras for physicists
,”
Int. J. Theor. Phys.
32
,
1087
1103
(
1993
).
27.
E.
Witten
and
B.
Zwiebach
, “
Algebraic structures and differential geometry in two-dimensional string theory
,”
Nucl. Phys. B
377
,
55
112
(
1992
).
28.
B. H.
Lian
and
G. J.
Zuckerman
, “
New perspectives on the BRST-algebraic structure of string theory
,”
Commun. Math. Phys.
154
,
613
646
(
1993
).
29.
K.
Bering
,
P. H.
Damgaard
, and
J.
Alfaro
, “
Algebra of higher antibrackets
,”
Nucl. Phys. B
478
,
459
503
(
1996
).
30.
F.
Akman
, “
On some generalizations of Batalin–Villkovisky algebras
,”
J. Pure Appl. Algebra
120
,
105
141
(
1997
).
31.
J.
Stasheff
, “
The (secret?) homological algebra of the Batalin–Vilkovisky approach
,” hep-th/9712157, to appear in Proceedings of the Conference on Secondary Calculus and Cohomological Physics, Moscow, August 1997.
32.
J. A.
De Azcárraga
,
J. M.
Izquierdo
, and
J. C.
Pérez Bueno
, “
An introduction to some novel applications of Lie algebra cohomology in mathematics and physics
,” physics/9803046, to appear in the Proceedings of the VI Fall Workshop on Geometry and Physics, Salamanca, September 1997.
33.
C.
Chevalley
and
S.
Eilenberg
, “
Cohomology theory of Lie groups and Lie algebras
,”
Trans. Am. Math. Soc.
63
,
85
124
(
1948
).
34.
J. A. De Azcárraga and J. M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics (Cambridge University Press, Cambridge, 1995).
35.
The algebra (2.7) can be represented by a Clifford algebra (see, e.g., Ref. 14). Namely, if we define ci=12i−iγi+r),πi=12i+iγi+r),i=1,…,r, where the γ’s are the generators of a 2r-dimensional Clifford algebra, then ci and πi verify the relations (2.7).
36.
Using the c’s to write ψ [Eq. (1.5)], rather than the ω’s of (2.12), one might introduce a Berezin37 integral measure to define 〈ψ,ψ〉 above as ∫dc1⋯dcrψ′†ψ14 for states ψ and ψ of ghost numbers q and r−q, respectively. However, this leads to a product that is not positive definite14 and, moreover, does not have the natural geometrical interpretation above.
37.
F. A.
Berezin
, “
Differential forms on supermanifolds
,”
Sov. J. Nucl. Phys.
30
,
605
609
(
1979
);
Introduction to Superanalysis (Reidel, Dordrecht, 1987).
38.
Taking advantage of the Cartan formalism by means of the equivalences s2∼d,2∼(−1/2)Ljij (where ij indicates the inner product) and Xj∼Lj, we may rapidly find W2∼(−1/2)[dLjij+Ljijd]=(−1/2)Lj[dij+ijd]=(−1/2)LjLj.
39.
The CE analog to the BRST q-cochains, the LI q-forms on G, automatically satisfy LXRψ=0, since the RI vector fields XR on G generate the left transformations. The invariance under the right transformations (LXψ=0, where X is a LI vector field, or Xψ=0 in the BRST formulation) is an additional condition. Thus, invariance above really means bi-invariance (under the left and right group translations) in the CE formulation of Lie algebra cohomology.
40.
W. V. D. Hodge, The Theory and Applications of Harmonic Integrals (Cambridge University Press, Cambridge, 1941).
41.
H.
Samelson
, “
Topology of Lie groups
,”
Bull. Am. Math. Soc.
57
,
2
37
(
1952
).
42.
W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature and Cohomology (Academic, New York, 1976), Vol. III.
43.
L. C.
Biedenharn
,
Phys. Lett.
3
,
69
70
(
1963
).
44.
A. Sudhery, Ph.D. thesis, Cambridge University, 1969.
45.
A. J.
Macfarlane
,
A.
Sudbery
, and
P. H.
Weisz
, “
On Gell–Mann’s λ matrices, d- and f-tensors, octets, and parametrisations of SU(3)
,”
Commun. Math. Phys.
11
,
77
(
1968
).
46.
J. A. M. Vermaseren, Symbolic Manipulation with FORM version 2: Tutorial and Reference Manual (CAN, 1992).
47.
M.
Dubois-Violette
, “
Generalized spaces with dN=0 and the q-differential calculus
,”
Czech. J. Phys.
46
,
1227
1233
(
1997
).
48.
R.
Kerner
, “
Zn-graded differential calculus
,”
Czech. J. Phys.
47
,
33
40
(
1997
).
49.
R. S.
Dunne
,
A. J.
Macfarlane
,
J. A.
De Azcárraga
, and
J. C.
Pérez Bueno
, “
Geometrical foundations of fractional supersymmetry
,”
Int. J. Mod. Phys. A
19
,
3275
3305
(
1997
).
50.
J. M.
Evans
,
M.
Hassan
,
N. J.
MacKay
, and
A. J.
Mountain
, “
Local conserved charges and principal chiral models
,” hep-th/9902008.
51.
F. A.
Bais
,
P.
Bouwknegt
,
M.
Surridge
, and
K.
Schoutens
, “
Extensions of the Virasoro algebra constructed from Kac–Moody algebras using higher order Casimir invariants
,”
Nucl. Phys. B
304
,
348
370
(
1988
).
52.
E.
Bergshoeff
,
A.
Bilal
, and
K. S.
Stelle
, “
W-symmetries: gauging and symmetry
,”
Mod. Phys. Lett. A
6
,
4959
4984
(
1991
).
53.
H.
Lu
,
C. N.
Pope
,
X. J.
Wang
, and
K. W.
Xu
, “
The complete cohomology of the W3 string
,”
Class. Quantum Grav.
11
,
967
981
(
1994
).
54.
P. Bouwknegt, J. McCarthy, and K. Pilch, TheW3Algebra (Springer-Verlag, Berlin, 1996).
This content is only available via PDF.
You do not currently have access to this content.