We introduce a noncommutative differential calculus on the two-parameter h-superplane via a contraction of the (p,q)-superplane. We manifestly show that the differential calculus is covariant under GLh1,h2(1|1) transformations. We also give a two-parameter deformation of the (1+1)-dimensional phase space algebra.

1.
S. L.
Woronowicz
,
Commun. Math. Phys.
122
,
125
(
1989
).
2.
A. Connes, Noncommutative Differential Geometry (Academic, London, 1994).
3.
J.
Wess
and
B.
Zumino
,
Nucl. Phys. B, Proc. Suppl.
18
,
302
(
1990
).
4.
Yu I.
Manin
,
Commun. Math. Phys.
123
,
163
(
1989
).
5.
S.
Soni
,
J. Phys. A
24
,
L459
(
1991
).
6.
W. S.
Chung
,
J. Math. Phys.
35
,
2485
(
1994
).
7.
V.
Karimipour
,
Lett. Math. Phys.
30
,
87
(
1994
).
8.
A.
Aghamohammadi
,
Mod. Phys. Lett. A
8
,
2607
(
1993
).
9.
S.
Çelik
,
S. A.
Çelik
, and
M.
Arik
,
J. Math. Phys.
39
,
3426
(
1998
).
10.
S.
Çelik
,
J. Math. Phys.
42
,
299
(
1997
).
11.
L.
Dabrowski
and
P.
Parashar
,
Lett. Math. Phys.
38
,
331
(
1996
).
12.
S.
Vokos
,
J. Math. Phys.
32
,
2979
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.