We derive Galilean wavelets, by which we mean coherent states of the affine Galilei group, that is, the Galilei group extended by independent space and time dilations. The construction follows a general method based on square integrable group representations, possibly modulo a subgroup, i.e., on a homogeneous space of the underlying group. We also examine the restriction to the Schrödinger subgroup, which contains only dilations that leave invariant the Schrödinger and the heat equations.

1.
S. T.
Ali
,
J-P.
Antoine
, and
J-P.
Gazeau
, “
De Sitter to Poincaré contraction and relativistic coherent states
,”
Ann. Inst. Henri Poincaré
52
,
83
111
(
1990
);
S. T.
Ali
,
J-P.
Antoine
, and
J-P.
Gazeau
, “
Square integrability of group representations on homogeneous spaces. I, II
,”
Ann. Inst. Henri Poincaré
55
,
829
855
(
1991
);
S. T.
Ali
,
J-P.
Antoine
, and
J-P.
Gazeau
,
Ann. Inst. Henri Poincaré
55
,
857
890
(
1991
).
2.
S. T.
Ali
,
J-P.
Antoine
, and
J-P.
Gazeau
, “
Continuous frames in Hilbert space
,”
Ann. Phys. (N.Y.)
222
,
1
37
(
1993
);
S. T.
Ali
,
J-P.
Antoine
, and
J-P.
Gazeau
, “
Relativistic quantum frames
,”
Ann. Phys. (N.Y.)
222
,
38
88
(
1993
).
3.
S. T.
Ali
,
J-P.
Antoine
,
J-P.
Gazeau
, and
U. A.
Mueller
, “
Coherent states and their generalizations: A mathematical overview
,”
Rev. Math. Phys.
7
,
1013
1104
(
1995
).
4.
S. T. Ali, J-P. Antoine, and J-P. Gazeau, Coherent States, Wavelets, and their Generalizations (Springer, New York, 1999) (to be published).
5.
U.
Niederer
, “
The maximal kinematical invariance group of the free Schrödinger equation
,”
Helv. Phys. Acta
45
,
802
810
(
1972
).
6.
M.
Perroud
, “
Projective representations of the Schrödinger group
,”
Helv. Phys. Acta
50
,
233
252
(
1977
).
7.
M. Duval-Destin and R. Murenzi, “Spatio-temporal wavelets: Application to the analysis of moving patterns,” in Progress in Wavelet Analysis and Applications (Proc. Toulouse 1992), edited by Y. Meyer and S. Roques (Editions Frontières, Gif-sur-Yvette, 1993), pp. 399–408.
8.
J-P.
Leduc
,
F.
Mujica
,
R.
Murenzi
, and
M. J. T.
Smith
, “
Missile-tracking algorithm using target-adapted spatio-temporal wavelets
,” Automatic Object Recognition VII,
SPIE Proc.
3069
,
400
411
(
1997
);
“Spatio-temporal wavelet transforms for motion tracking,” in IEEE ICASSP ’97 (IEEE Computer Soc. Press, Los Alamitos, CA, 1997), Vol. 4, pp. 3013–3016;
J-P.
Leduc
,
F.
Mujica
,
R.
Murenzi
, and
M. J. T.
Smith
, “
Spatio-temporal continuous wavelets applied to missile warhead detection and tracking
,” Visual Communications and Image Processing ’97,
SPIE Proc.
3024
,
787
798
(
1997
);
F.
Mujica
,
R.
Murenzi
,
M. J. T.
Smith
, and
J-P.
Leduc
, “
Robust tracking in compressed image sequences
,”
J. Electron. Imaging
7
,
746
754
(
1998
).
9.
G.
Bohnké
, “
Treillis d’ondelettes associés aux groupes de Lorentz
,”
Ann. Inst. Henri Poincaré
54
,
245
259
(
1991
).
10.
A. Unterberger, Analyse Harmonique et Analyse Pseudo-Différentielle du Cône de Lumière, Astérisque (SMF, Paris, 1987), Vol. 156.
11.
J. Bertrand and P. Bertrand, “Reflectivity study of time-varying targets,” in Signal Processing VI: Theory and Applications (Proc. EUSIPCO 92, Brussels), edited by J. Vandewalle et al. (Elsevier, Amsterdam, 1992), pp. 1813–1816.
12.
J-M.
Lévy-Leblond
, “
Galilei group and nonrelativistic quantum mechanics
,”
J. Math. Phys.
4
,
453
507
(
1963
);
“Galilei group and Galilean invariance,” in Group Theory and its Applications, edited by E. M. Loebl (Academic, New York, 1971), Vol. II, pp. 221–299.
13.
J.
Voisin
, “
On some unitary representations of the Galilei group. I. Irreducible representations
,”
J. Math. Phys.
6
,
1519
1529
(
1965
).
14.
C. Kalisa, “Etats cohérents affines: canoniques, galiléens et relativistes,” Thèse de doctorat, Université Catholique de Louvain, 1993.
15.
J-P. Antoine, “Time-dependent wavelets, alias space–time affine coherent states,” in Quantization, Coherent States, and Poisson Structures (Proc. Bialowieza XIV, 1995), edited by A. Strasburger, S. T. Ali, J-P. Antoine, J-P. Gazeau, and A. Odzijewicz (PWN, Warsaw, 1998), pp. 123–132.
16.
P.
Aniello
,
G.
Cassinelli
,
E.
De Vito
, and
A.
Levrero
, “
Square-integrability of induced representations of semidirect products
,”
Rev. Math. Phys.
10
,
301
313
(
1998
);
P.
Aniello
,
G.
Cassinelli
,
E.
De Vito
, and
A.
Levrero
, “
Wavelet transforms and discrete frames associated to semidirect products
,”
J. Math. Phys.
39
,
3965
3973
(
1998
).
17.
J. R. Klauder and B. S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985).
18.
A. M. Perelomov, Generalized Coherent States and their Applications (Springer-Verlag, Berlin, 1986).
19.
G. Warner, Harmonic Analysis on Semi-Simple Lie Groups. I (Springer-Verlag, Berlin, 1972).
20.
R.
Gilmore
, “
Geometry of symmetrized states
,”
Ann. Phys. (N.Y.)
74
,
391
463
(
1972
);
R.
Gilmore
, “
On properties of coherent states
,”
Rev. Mex. Fis.
23
,
143
187
(
1974
).
21.
A. M.
Perelomov
, “
Coherent states for arbitrary Lie group
,”
Commun. Math. Phys.
26
,
222
236
(
1972
).
22.
R. J.
Duffin
and
A. C.
Schaeffer
, “
A class of nonharmonic Fourier series
,”
Trans. Am. Math. Soc.
72
,
341
366
(
1952
).
23.
I.
Daubechies
,
A.
Grossmann
, and
Y.
Meyer
, “
Painless nonorthogonal expansions
,”
J. Math. Phys.
27
,
1271
1283
(
1986
).
24.
C.
Kalisa
and
B.
Torrésani
, “
N-dimensional affine Weyl–Heisenberg wavelets
,”
Ann. Inst. Henri Poincaré
59
,
201
236
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.