We derive Galilean wavelets, by which we mean coherent states of the affine Galilei group, that is, the Galilei group extended by independent space and time dilations. The construction follows a general method based on square integrable group representations, possibly modulo a subgroup, i.e., on a homogeneous space of the underlying group. We also examine the restriction to the Schrödinger subgroup, which contains only dilations that leave invariant the Schrödinger and the heat equations.
REFERENCES
1.
S. T.
Ali
, J-P.
Antoine
, and J-P.
Gazeau
, “De Sitter to Poincaré contraction and relativistic coherent states
,” Ann. Inst. Henri Poincaré
52
, 83
–111
(1990
);S. T.
Ali
, J-P.
Antoine
, and J-P.
Gazeau
, “Square integrability of group representations on homogeneous spaces. I, II
,” Ann. Inst. Henri Poincaré
55
, 829
–855
(1991
);S. T.
Ali
, J-P.
Antoine
, and J-P.
Gazeau
, Ann. Inst. Henri Poincaré
55
, 857
–890
(1991
).2.
S. T.
Ali
, J-P.
Antoine
, and J-P.
Gazeau
, “Continuous frames in Hilbert space
,” Ann. Phys. (N.Y.)
222
, 1
–37
(1993
);S. T.
Ali
, J-P.
Antoine
, and J-P.
Gazeau
, “Relativistic quantum frames
,” Ann. Phys. (N.Y.)
222
, 38
–88
(1993
).3.
S. T.
Ali
, J-P.
Antoine
, J-P.
Gazeau
, and U. A.
Mueller
, “Coherent states and their generalizations: A mathematical overview
,” Rev. Math. Phys.
7
, 1013
–1104
(1995
).4.
S. T. Ali, J-P. Antoine, and J-P. Gazeau, Coherent States, Wavelets, and their Generalizations (Springer, New York, 1999) (to be published).
5.
U.
Niederer
, “The maximal kinematical invariance group of the free Schrödinger equation
,” Helv. Phys. Acta
45
, 802
–810
(1972
).6.
M.
Perroud
, “Projective representations of the Schrödinger group
,” Helv. Phys. Acta
50
, 233
–252
(1977
).7.
M. Duval-Destin and R. Murenzi, “Spatio-temporal wavelets: Application to the analysis of moving patterns,” in Progress in Wavelet Analysis and Applications (Proc. Toulouse 1992), edited by Y. Meyer and S. Roques (Editions Frontières, Gif-sur-Yvette, 1993), pp. 399–408.
8.
J-P.
Leduc
, F.
Mujica
, R.
Murenzi
, and M. J. T.
Smith
, “Missile-tracking algorithm using target-adapted spatio-temporal wavelets
,” Automatic Object Recognition VII, SPIE Proc.
3069
, 400
–411
(1997
);“Spatio-temporal wavelet transforms for motion tracking,” in IEEE ICASSP ’97 (IEEE Computer Soc. Press, Los Alamitos, CA, 1997), Vol. 4, pp. 3013–3016;
J-P.
Leduc
, F.
Mujica
, R.
Murenzi
, and M. J. T.
Smith
, “Spatio-temporal continuous wavelets applied to missile warhead detection and tracking
,” Visual Communications and Image Processing ’97, SPIE Proc.
3024
, 787
–798
(1997
);F.
Mujica
, R.
Murenzi
, M. J. T.
Smith
, and J-P.
Leduc
, “Robust tracking in compressed image sequences
,” J. Electron. Imaging
7
, 746
–754
(1998
).9.
G.
Bohnké
, “Treillis d’ondelettes associés aux groupes de Lorentz
,” Ann. Inst. Henri Poincaré
54
, 245
–259
(1991
).10.
A. Unterberger, Analyse Harmonique et Analyse Pseudo-Différentielle du Cône de Lumière, Astérisque (SMF, Paris, 1987), Vol. 156.
11.
J. Bertrand and P. Bertrand, “Reflectivity study of time-varying targets,” in Signal Processing VI: Theory and Applications (Proc. EUSIPCO 92, Brussels), edited by J. Vandewalle et al. (Elsevier, Amsterdam, 1992), pp. 1813–1816.
12.
J-M.
Lévy-Leblond
, “Galilei group and nonrelativistic quantum mechanics
,” J. Math. Phys.
4
, 453
–507
(1963
);“Galilei group and Galilean invariance,” in Group Theory and its Applications, edited by E. M. Loebl (Academic, New York, 1971), Vol. II, pp. 221–299.
13.
J.
Voisin
, “On some unitary representations of the Galilei group. I. Irreducible representations
,” J. Math. Phys.
6
, 1519
–1529
(1965
).14.
C. Kalisa, “Etats cohérents affines: canoniques, galiléens et relativistes,” Thèse de doctorat, Université Catholique de Louvain, 1993.
15.
J-P. Antoine, “Time-dependent wavelets, alias space–time affine coherent states,” in Quantization, Coherent States, and Poisson Structures (Proc. Bialowieza XIV, 1995), edited by A. Strasburger, S. T. Ali, J-P. Antoine, J-P. Gazeau, and A. Odzijewicz (PWN, Warsaw, 1998), pp. 123–132.
16.
P.
Aniello
, G.
Cassinelli
, E.
De Vito
, and A.
Levrero
, “Square-integrability of induced representations of semidirect products
,” Rev. Math. Phys.
10
, 301
–313
(1998
);P.
Aniello
, G.
Cassinelli
, E.
De Vito
, and A.
Levrero
, “Wavelet transforms and discrete frames associated to semidirect products
,” J. Math. Phys.
39
, 3965
–3973
(1998
).17.
J. R. Klauder and B. S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985).
18.
A. M. Perelomov, Generalized Coherent States and their Applications (Springer-Verlag, Berlin, 1986).
19.
G. Warner, Harmonic Analysis on Semi-Simple Lie Groups. I (Springer-Verlag, Berlin, 1972).
20.
R.
Gilmore
, “Geometry of symmetrized states
,” Ann. Phys. (N.Y.)
74
, 391
–463
(1972
);21.
A. M.
Perelomov
, “Coherent states for arbitrary Lie group
,” Commun. Math. Phys.
26
, 222
–236
(1972
).22.
R. J.
Duffin
and A. C.
Schaeffer
, “A class of nonharmonic Fourier series
,” Trans. Am. Math. Soc.
72
, 341
–366
(1952
).23.
I.
Daubechies
, A.
Grossmann
, and Y.
Meyer
, “Painless nonorthogonal expansions
,” J. Math. Phys.
27
, 1271
–1283
(1986
).24.
C.
Kalisa
and B.
Torrésani
, “N-dimensional affine Weyl–Heisenberg wavelets
,” Ann. Inst. Henri Poincaré
59
, 201
–236
(1993
).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.