Let ℋ be a Hilbert C*-module over a matrix algebra A. It is proved that any function T:HH which preserves the absolute value of the (generalized) inner product is of the form Tf=φ(f )Uf(f∈H), where φ is a phase-function and U is an A-linear isometry. The result gives a natural extension of Wigner’s classical unitary–antiunitary theorem for Hilbert modules.

1.
L.
Molnár
, “
An algebraic approach to Wigner’s unitary–antiunitary theorem
,”
J. Aust. Math. Soc. A, Pure Math. Stat.
65
,
354
369
(
1998
).
2.
P. P.
Saworotnow
, “
A generalized Hilbert space
,”
Duke Math. J.
35
,
191
197
(
1968
).
3.
V.
Bargmann
, “
Note on Wigner’s theorem on symmetry operations
,”
J. Math. Phys.
5
,
862
868
(
1964
).
4.
C. S.
Sharma
and
D. F.
Almeida
, “
A direct proof of Wigner’s theorem on maps which preserve transition probabilities between pure states of quantum systems
,”
Ann. Phys.
197
,
300
309
(
1990
).
5.
J.
Rätz
, “
On Wigner’s theorem: Remarks, complements, comments, and corollaries
,”
Aequationes Math.
52
,
1
9
(
1996
).
6.
C. S.
Sharma
and
D. F.
Almeida
, “
Additive isometries on a quaternionic Hilbert space
,”
J. Math. Phys.
31
,
1035
1041
(
1990
).
7.
L.
Molnár
, “
Modular bases in a Hilbert A-module
,”
Czech. Math. J.
42
,
649
656
(
1992
).
8.
L. J.
Bunce
and
D. M.
Wright
, “
The Mackey–Gleason problem
,”
Bull. Am. Math. Soc.
26
,
288
293
(
1992
).
9.
L.
Molnár
, “
The set of automorphisms of B(H) is topologically reflexive in B(B(H)),
Stud. Math.
122
,
183
193
(
1997
).
10.
N.
Jacobson
and
C.
Rickart
, “
Jordan homomorphisms of rings
,”
Trans. Am. Math. Soc.
69
,
479
502
(
1950
).
11.
M.
Ozawa
, “
Hilbert B(H)-modules and stationary processes
,”
Kodai Math. J.
3
,
26
39
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.