This is the first part of a series of two papers. In this article we study the linearization stability of the Einstein equation in the presence of matter. We have slightly changed the classic definition of this concept for the vacuum spacetime and a more general one adapted to our case is given. We consider a Robertson–Walker model (V,g,T) where V stands for the spacetime, g for a Robertson–Walker metric, and T for a stress-energy tensor of a perfect fluid. We write V=S×I where S is a spacelike hypersurface of V and I an ↛-interval. We show that in the case S has a constant curvature K equal to 0, the Einstein equation G(g)=χT is linearization stable at g. In a subsequent paper we shall prove that in the case K=1 the opposite occurs. The case K=−1 remains as an open question.

1.
P. D.
D’Eath
, “
On the existence of perturbed Robertson–Walker universes
,”
Ann. Phys. (N.Y.)
98
,
237
263
(
1976
).
2.
J. E. Marsden, “The initial value problem and dynamics of gravitational fields,” in Proceedings of the Ninth International Conference on General Relativity and Gravitation, edited by E. Schmutzer (Cambridge University Press, Cambridge, 1983), pp. 115–126.
3.
J. E. Marsden, “Lectures on Geometric Methods in Mathematical Physics,” Regional Conference Series in Applied Mathematics, Commun. Math. Phys. .
4.
V.
Moncrief
, “
Space-time symmetries and linearization stability of the Einstein equations (I)
,”
J. Math. Phys.
16
,
493
498
(
1975
).
5.
V.
Moncrief
, “
Space-time symmetries and linearization stability of the Einstein equations (II)
,”
J. Math. Phys.
17
,
1893
1902
(
1976
).
6.
D.
Bao
,
J. E.
Marsden
, and
R.
Walton
, “
The Hamiltonian structure of general relativistic perfect fluids
,”
Commun. Math. Phys.
99
,
319
345
(
1985
).
7.
A.
Fischer
and
J. E.
Marsden
, “
Linearization stability of nonlinear partial differential equations
,”
Proc. Symp. Pure Math.
27
,
219
263
(
1975
).
8.
A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation (Preussiche Akademie der Wissenschaften, Sitzungsberiche, 1916), pp. 688–696.
9.
A. Einstein, Über Gravitationswellen (Preussiche Akademie der Wissenschaften, Sitzungsberiche, 1918), pp. 154–167.
10.
Y.
Choquet-Bruhat
and
S.
Deser
, “
On the stability of flat space
,”
Ann. Phys. (N.Y.)
81
,
165
168
(
1973
).
11.
Y.
Choquet-Bruhat
,
A.
Fischer
, and
J. E.
Marsden
, “
Équations des constraintes sur une variété non compacte
,”
C. R. Acad. Sci., Ser. I: Math.
284
,
A975
A978
(
1977
).
12.
M.
Cantor
, “
Spaces of functions with asymptotic conditions on Rn,
Indiana Univ. Mat. J.
24
,
897
902
(
1975
).
13.
M.
Cantor
, “
Some problems of global analysis on asymptotically simple manifolds
,”
Compositio Mathematica
38
,
3
35
(
1979
).
14.
A.
Fischer
and
J. E.
Marsden
, “
The Einstein equations of evolution—a geometric approach
,”
J. Math. Phys.
13
,
546
568
(
1972
).
15.
A. Lichnerowicz, Théories Relativistes de la Gravitation et de l’Électromagnétisme (Masson and Cie Paris, 1955).
16.
A.
Fischer
and
J. E.
Marsden
, “
The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system
,”
Commun. Math. Phys.
28
,
1
38
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.