Asymptotic expressions for Clebsch–Gordan coefficients are derived from an exact integral representation. Both the classically allowed and forbidden regions are analyzed. Higher-order approximations are calculated. These give, for example, six digit accuracy when the quantum numbers are in the hundreds.

1.
E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York, 1959).
2.
A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton U.P. Princeton, NJ, 1968).
3.
P. J.
Brussaard
and
H. A.
Tolhoek
,
Physica
23
,
955
(
1957
).
4.
G. Ponzano and T. Regge, in Spectroscopic and Group Theoretical Methods in Physics (North-Holland, Amsterdam, 1968).
5.
W. H. Miller, in Advances in Chemical Physics, Vol. 25, edited by I. Prigonine and S. A. Rice (Wiley, New York, 1974).
6.
K. Srinivasa Rao and V. Rajeswari, Quantum Theory of Angular Momentum, Selected Topics (Springer/Narosa, Berlin, 1993).
7.
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics: Theory and Application (Addison–Wesley, Reading, MA, 1981).
8.
O.
Schnetz
, “
Generating Functions for Multi-j-Symbols
” LANL preprint math-ph/9805027(
1998
).
9.
J.-J.
Labarthe
,
J. Phys. A
8
,
1543
(
1975
).
10.
T.
Regge
,
Nuovo Cimento
10
,
544
(
1958
).
11.
G.
Racah
,
Phys. Rev.
62
,
438
(
1942
);
G.
Racah
,
Phys. Rev.
63
,
367
(
1943
).
This content is only available via PDF.
You do not currently have access to this content.