We propose the (BRST-invariant) quantum open superstring field theory in the “B0-gauge,” based on Neveu–Schwarz (NS) strings in 1 picture and Ramond (R) strings in 12 picture. We give the propagators of these open NS and R superstrings. In order to obtain the BRST-invariant interaction terms among these superstrings, we modify the interaction terms among three superstrings (i.e., among NS–NS–NS and R–R–NS) by subtracting the infinite number of counter terms, each of which involves interaction terms among “more than four superstrings.” The modified action can be obtained successively, so that resulting amplitudes in g-loops should become BRST invariant. Thus obtained amplitudes are referred to as the “amputated scatts,” with the help of which the physical scattering amplitudes can be expressed. These physical scattering amplitudes among NB bosonic (NF fermionic) particles are calculated by using the analytic inlint gluing operator (which has already been proposed and used in the quantum bosonic string field theory “in the B0=0 gauge”).

1.
For reviews of Ramond–Neveu–Schwarz (as well as Green–Schwarz) superstring theory, see M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge U.P., New York, 1987), Vols. 1 and 2;
M. Kaku, Introduction to Superstring (Springer-Verlag, New York, 1988).
2.
J. Polchinski, String Theory I (Introduction to the bosonic string) and String Theory II (Superstring theory and beyond) (Cambridge U.P., New York, 1998).
3.
E.
Witten
, “
Non-commutative geometry and string field theory
,”
Nucl. Phys. B
268
,
253
294
(
1986
).
Witten’s quantum open bosonic string field theory has been discussed by many authors. See
C. B.
Thorn
, “
Perturbation theory for quantized string fields
,”
Nucl. Phys. B
287
,
61
92
(
1987
);
A.
LeClair
,
M. E.
Peskin
, and
C. R.
Preitschopf
, “
String field theory on the conformal plane (I), Kinematical principles
,”
Nucl. Phys. B
317
,
411
463
(
1988
);
A.
LeClair
,
M. E.
Peskin
, and
C. R.
Preitschopf
, “
String field theory on the conformal plane (II), Generalized gluing
,”
Nucl. Phys. B
317
,
464
508
(
1989
) and various papers cited therein.
4.
T.
Kugo
,
H.
Kunitomo
, and
K.
Suehiro
, “
Non-polynomial closed string field theory
,”
Phys. Lett. B
226
,
48
54
(
1989
);
T.
Kugo
and
K.
Suehiro
, “
Non-polynomial closed string field theory: Action and its gauge invariance
,”
Nucl. Phys. B
337
,
434
466
(
1990
).
B.
Zwiebach
, “
Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation
,”
Nucl. Phys. B
390
,
33
152
(
1993
);
B.
Zwiebach
, “
Oriented open-closed string field theory revisited
,”
Annals Phys.
267
,
193
248
(
1998
), and various papers cited therein.
5.
S.
Naito
, “
Inlaying vertex function and scattering amplitude
,”
J. Math. Phys.
38
,
1413
1453
(
1997
).
6.
E.
Witten
, “
Interacting field theory of open superstring
,”
Nucl. Phys. B
276
,
291
324
(
1986
).
7.
P.
Ramond
, “
Dual theory for free fermions
,”
Phys. Rev. D
3
,
2415
2418
(
1971
).
8.
A.
Neveu
and
J. H.
Schwarz
, “
Factorizable dual model of pions
,”
Nucl. Phys. B
31
,
86
112
(
1971
);
A.
Neveu
and
J. H.
Schwarz
, “
Quark model of dual pions
,”
Phys. Rev. D
4
,
1109
1111
(
1971
).
9.
D.
Friedan
,
E.
Martinec
, and
S.
Schenker
, “
Conformal Invariance, supersymmetry and string theory
,”
Nucl. Phys. B
271
,
93
165
(
1986
).
10.
C.
Wendt
, “
Scattering amplitudes and contact interactions in Witten’s superstring field theory
,”
Nucl. Phys. B
314
,
209
237
(
1989
).
11.
C. R.
Preitschopf
,
C. B.
Thorn
, and
S.
Yost
, “
Superstring field theory
,”
Nucl. Phys. B
337
,
363
433
(
1990
).
12.
J. P.
Yamron
, “
A gauge invariant action for the free Ramond string
,”
Phys. Lett. B
174
,
69
74
(
1986
);
B.
Sazdovic
, “
Equivalence of different formulations of the free Ramond string field theory
,”
Phys. Lett. B
195
,
536
540
(
1987
);
I. Ya.
Aref’eva
and
P. B.
Mdvedev
, “
Truncation, picture-changing operation and spacetime super-symmetry in Neveu–Schwarz–Ramond string field theory
,”
Phys. Lett. B
202
,
510
514
(
1988
);
I. Ya.
Aref’eva
and
P. B.
Mdvedev
, “
Anomalies in Witten’s field theory of the NSR string
,”
Phys. Lett. B
212
,
299
308
(
1988
);
T.
Kugo
and
H.
Terao
, “
New gauge symmetries in Witten’s Ramond string field theory
,”
Phys. Lett. B
208
,
416
420
(
1988
).
13.
F.
Gliozzi
,
J.
Scherk
, and
D.
Olive
, “
Supersymmetry, supergravity theories and the dual spinor model
,”
Nucl. Phys. B
122
,
253
290
(
1977
).
14.
S.
Naito
, “
Generating functionals of physical vertex operators in superstring
,”
J. Math. Phys.
38
,
4980
5009
(
1997
);
S.
Naito
, “
Physical vertex operators in the Ramond sector
,”
J. Math. Phys.
39
,
1402
1440
(
1998
);
S.
Naito
, “
Operator product expansions and stress operators
,”
J. Math. Phys.
39
,
1848
1886
(
1998
).
15.
V. A.
Kostelecky
,
O.
Lechtenfeld
,
W.
Lerche
,
S.
Samuel
, and
S.
Watamura
, “
Conformal techniques, bosonization and tree-level string amplitudes
,”
Nucl. Phys. B
288
,
173
232
(
1987
).
16.
As a standard texbook on quantum field theory, we give J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw–Hill, New York, 1965). LSZ reduction formulas are given in Chap. 16, while Wick’s theorem is given in Chap. 17.
17.
D. J.
Gross
and
A.
Jevicki
, “
Operator formulation of interacting string field theory (I)
,”
Nucl. Phys. B
283
,
1
49
(
1987
);
D. J.
Gross
and
A.
Jevicki
, “
Operator formulation of interacting string field theory (II)
,”
Nucl. Phys. B
287
,
225
250
(
1987
);
D. J.
Gross
and
A.
Jevicki
, “
Operator formulation of interacting string field theory (III), NSR superstring
,”
Nucl. Phys. B
293
,
29
82
(
1987
).
18.
S. B.
Giddings
, “
The Veneziano amplitude from interacting string field theory
,”
Nucl. Phys. B
278
,
242
255
(
1986
);
S. B.
Giddings
and
E.
Martinec
, “
Conformal geometry and string field theory
,”
Nucl. Phys. B
278
,
91
120
(
1986
);
S.
Samuel
, “
Covariant off-shell string amplitudes
,”
Nucl. Phys. B
308
,
285
316
(
1988
);
R.
Bluhm
and
S.
Samuel
, “
The off-shell Koba-Nielsen formula
,”
Nucl. Phys. B
323
,
337
373
(
1989
) and various papers cited therein.
19.
S.
Samuel
, “
Solving the open bosonic string in perturbation theory
,”
Nucl. Phys. B
341
,
513
610
(
1990
).
20.
P. D.
Vecchia
,
F.
Pezella
,
M.
Frau
,
K.
Hornfeck
,
A.
Lerda
, and
S.
Sciuto
, “
N-point g-loop vertex for a free bosonic theory with vacuum charge Q
,”
Nucl. Phys. B
322
,
317
372
(
1989
).
21.
E.
Verlinde
and
H.
Verlinde
, “
Chiral bosonization, determinants and the string partition function
,”
Nucl. Phys. B
288
,
357
396
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.