Any deformation of a Weyl or Clifford algebra 𝒜 can be realized through a “deforming map,” i.e., a formal change of generators in 𝒜. This is true in particular if 𝒜 is covariant under a Lie algebra g and its deformation is induced by some triangular deformation Uhg of the Hopf algebra Ug. We propose a systematic method to construct all the corresponding deforming maps, together with the corresponding realizations of the action of Uhg. The method is then generalized and explicitly applied to the case that Uhg is the quantum group Uhsl(2). A preliminary study of the status of deforming maps at the representation level shows in particular that “deformed” Fock representations induced by a compact Uhg can be interpreted as standard “undeformed” Fock representations describing particles with ordinary Bose or Fermi statistics.

1.
E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics 74 (Cambridge U.P., Cambridge, 1980).
2.
V. G. Drinfeld, “Quantum Groups,” edited by A. Gleason, in Proceedings of the International Congress of Mathematicians, Berkeley, 1986 (American Mathematical Society, Providence, 1987), Vol. 1, p. 798.
3.
W.
Pusz
and
S. L.
Woronowicz
,
Rep. Math. Phys.
27
,
231
(
1989
).
4.
J.
Wess
and
B.
Zumino
,
Nucl. Phys. B, Proc. Suppl.
18
,
302
(
1991
).
5.
L. C.
Biedenharn
,
J. Phys. A
22
,
L873
(
1989
);
A. J.
Macfarlane
,
J. Phys. A
22
,
4581
(
1989
).
6.
S.
Vokos
and
C.
Zachos
,
Mod. Phys. Lett. A
9
,
1
(
1994
) and references therein;
see also J. Seifert, Ph.D. thesis, Munich University (1996) (in German).
7.
T. L.
Curtright
and
C. K.
Zachos
,
Phys. Lett. B
243
,
237
(
1990
).
8.
T. L.
Curtright
,
G. I.
Ghandour
, and
C. K.
Zachos
,
J. Math. Phys.
32
,
676
(
1991
).
9.
G. Fiore, “Drinfel’d Twist and q-deforming Maps for Lie Groups Covariant Heisenberg Algebras,” Preprint LMU-TPW 97-07 and e-print q-alg/9708017.
10.
M.
Gerstenhaber
,
Ann. Math.
79
,
59
(
1964
).
11.
F.
du Cloux
,
Asterisque (Soc. Math. France)
124–125
,
129
(
1985
).
12.
M.
Pillin
,
Commun. Math. Phys.
180
,
23
(
1996
).
13.
F.
Bayen
,
M.
Flato
,
C.
Fronsdal
,
A.
Lichnerowicz
, and
D.
Sternheimer
,
Ann. Phys. (N.Y.)
111
,
61
(
1978
);
F.
Bayen
,
M.
Flato
,
C.
Fronsdal
,
A.
Lichnerowicz
, and
D.
Sternheimer
,
Ann. Phys. (N.Y.)
111
,
111
(
1978
).
14.
V. G.
Drinfeld
,
Dokl. Akad. Nauk SSSR
273
,
531
(
1983
);
Translation: Soviet Math. Dokl. 28, (1983).
15.
N. Yu.
Reshetikhin
Lett. Math. Phys.
20
,
331
(
1990
).
16.
V. G.
Drinfeld
,
Leningrad Math. J.
1
,
1419
(
1990
).
17.
O.
Ogievetsky
,
Lett. Math. Phys.
24
,
245
(
1992
).
18.
G.
Fiore
and
P.
Schupp
,
Nucl. Phys. B
470
,
211
(
1996
);
“Statistics and Quantum Group Symmetries, e-print hep-th/9605133, Banach Center Publications, Vol. 40, Inst. of Mathematics, Polish Academy of Sciences, Warszawa, edited by P. Budzyski, W. Pusz, and S. Zakrweski.
19.
G. Fiore, “On Bose-Fermi Statistics, Quantum Group Symmetry, and Second Quantization,” Preprint LMU-TPW 96-17 and e-print hep-th/9611144. To appear in the proceedings of “Group21.”
20.
C.
Ohn
,
Lett. Math. Phys.
166
,
63
(
1994
).
21.
L. D.
Faddeev
,
N. Y.
Reshetikhin
, and
L. A.
Takhtajan
,
Algebra i Analysis
1
,
178
(
1989
);
L. D.
Faddeev
,
N. Y.
Reshetikhin
, and
L. A.
Takhtajan
, translation:
Leningrad Math. J.
1
,
193
(
1990
).
22.
B.
Jurco
,
Commun. Math. Phys.
166
,
63
(
1994
).
23.
See, e.g., L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Encyclopedia of Mathematics and its Applications, Vol. 8 (Addison–Wesley Reading, MA, 1981);
V.
Manko
,
G.
Marmo
,
P.
Vitale
, and
F.
Zaccaria
,
Int. J. Mod. Phys. A
9
,
5541
(
1994
).
24.
W.
Pusz
,
Rep. Math. Phys.
27
,
349
(
1989
).
25.
S. Majid, Foundations of Quantum Groups (Cambridge U.P., Cambridge, 1995).
26.
T.
Hayashi
,
Commun. Math. Phys.
127
,
129
(
1990
).
27.
G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol. 35 (Cambridge U.P., Cambridge, 1990).
28.
See, for instance,
A.
Lorek
,
A.
Ruffing
, and
J.
Wess
, “
A q-deformation of the Harmonic Oscillator
,” preprint MPI-PHT-96-26 and e-print hep-th/9605161, and references therein.
29.
A.
Kempf
,
J. Math. Phys.
35
,
4483
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.