A noncommutative differential calculus on the h-superplane is presented via a contraction of the q-superplane. An R-matrix which satisfies both ungraded and graded Yang–Baxter equations is obtained and a new deformation of the (1+1)-dimensional classical phase space (the super-Heisenberg algebra) is introduced.

1.
V. G. Drinfeld, Proceedings of the IMS, Berkeley, CA, 1986 (unpublished);
Yu I. Manin, Quantum Groups and Non-Commutative Geometry (CRM, Montreal University Press, 1988).
2.
A. Connes, Non-Commutative Geometry (Academic, London, 1994).
3.
B.
Schmidke
,
S.
Vokos
, and
B.
Zumino
,
Z. Phys. C
48
,
249
(
1990
);
E.
Corrigan
,
B.
Fairlie
,
P.
Fletcher
, and
R.
Sasaki
,
J. Math. Phys.
31
,
776
(
1990
).
4.
J.
Wess
and
B.
Zumino
,
Nucl. Phys. B, Proc. Suppl.
18
,
302
(
1990
).
5.
F.
Mueller-Hoisen
,
J. Phys. A
25
,
1703
(
1992
).
6.
S.
Soni
,
J. Phys. A
24
,
L459
(
1991
);
S.
Soni
,
J. Phys. A
24
,
619
(
1991
).
7.
W. S.
Chung
,
J. Math. Phys.
35
,
2485
(
1994
).
8.
L.
Dabrowski
and
P.
Parashar
,
Lett. Math. Phys.
38
(
1996
).
9.
Yu. I.
Manin
,
Commun. Math. Phys.
123
,
163
(
1989
).
10.
A.
Aghamohammadi
,
M.
Khorrami
, and
A.
Shariati
,
J. Phys. A
28
,
L225
(
1995
);
V.
Karimipour
,
Lett. Math. Phys.
30
,
87
(
1994
).
11.
M.
Chaichian
,
P.
Kulish
, and
J.
Lukierski
,
Phys. Lett. B
262
,
43
(
1991
).
12.
S.
Çelik
,
Lett. Math. Phys.
42
,
299
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.