In a recent paper [Zhijun Qiao and Ruguang Zhou, Phys. Lett. A 235, 35 (1997)], the amazing fact was reported that a discrete and a continuous integrable system share the same r-matrix with the interesting property of being nondynamical. Now, we present three further pairs of different continuous integrable systems sharing the same r-matrix again being nondynamical. The first pair is the finite-dimensional constrained system (FDCS) of the famous AKNS hierarchy and the Dirac hierarchy; the second pair is the FDCS of the well-known geodesic flows on the ellipsoid and the Heisenberg spin chain hierarchy; and the third pair is the FDCS of one hierarchy studied by Xianguo Geng [Phys. Lett. A 162, 375 (1992)] and another hierarchy proposed by Zhijun Qiao [Phys. Lett. A 192, 316 (1994)]. All those FDCSs possess Lax representations and from the viewpoint of r-matrix can be shown to be completely integrable in Liouville’s sense.

1.
(a)
C. W.
Cao
,
Chin. Quart. J. Math.
3
,
90
(
1988
);
(b)
C. W.
Cao
,
Sci. Sin. A (Chinese Series)
32
,
701
(
1989
);
(c)
C. W.
Cao
,
Sci. Sinica A (English Series)
33
,
528
(
1990
).
2.
M.
Antonowicz
and
S. R.
Wojciechowski
,
Phys. Lett. A
147
,
455
(
1990
).
3.
C. W.
Cao
,
Acta Math. Sin. New Series
6
,
35
(
1990
).
4.
M.
Antonowicz
and
S. R.
Wojciechowski
,
J. Phys. A
24
,
5043
(
1991
).
5.
C. W.
Cao
and
X. G.
Geng
,
J. Math. Phys.
32
,
2323
(
1991
).
6.
C. W.
Cao
,
Acta Math. Sin. New Series
7
,
216
(
1991
).
7.
X. G.
Geng
,
Phys. Lett. A
162
,
375
(
1992
).
8.
Z. J.
Qiao
,
J. Math. Phys.
35
,
3110
(
1993
).
9.
C. W.
Cao
,
Phys. Lett. A
184
,
333
(
1994
).
10.
W. X.
Ma
and
W.
Strampp
,
Phys. Lett. A
185
,
277
(
1994
).
11.
Z. J.
Qiao
,
Phys. Lett. A
192
,
316
(
1994
).
12.
Z. J.
Qiao
,
J. Math. Phys.
36
,
3535
(
1995
).
13.
M. A.
Semenov-Tian-Shansky
,
Funct. Anal. Appl.
17
,
259
(
1983
).
14.
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1986).
15.
A. G.
Reyman
and
M. A.
Semenov-Tian-Shansky
,
Phys. Lett. A
130
,
456
(
1988
).
16.
A. G. Reyman and M. A. Semenov-Tian-Shansky, Dynamical Systems 7, edited by V. I. Arnol’d and S. P. Novikov (Springer, Berlin, 1993), Vol. EMS 16.
17.
E. K.
Sklyanin
,
J. Sov. Math.
47
,
2473
(
1989
).
18.
O.
Babelon
and
C. M.
Viallet
,
Phys. Lett. B
237
,
411
(
1990
).
19.
J. C.
Eilbeck
,
V. Z.
Enol’skii
,
V. B.
Kuznetsov
, and
A. V.
Tsiganov
,
J. Phys. A
27
,
567
(
1994
).
20.
Z. J.
Qiao
,
Physica A
243
,
129
(
1997
).
21.
F. W.
Nijhoff
,
O.
Ragnisco
, and
V. B.
Kuznetsov
,
Commun. Math. Phys.
176
,
681
(
1996
).
22.
R. G.
Zhou
,
Phys. Lett. A
220
,
320
(
1996
).
23.
Z. J.
Qiao
, Non-dynamical r-matrix and algebraic-geometric solution for the integrable symplectic map, 1996, preprint, to appear in
Chin. Sci. Bull.
43, No.
10
(
1998
);
R. G.
Zhou
,
J. Math. Phys.
38
,
2535
(
1997
).
24.
Z. J.
Qiao
and
R. G.
Zhou
,
Phys. Lett. A
235
,
35
(
1997
).
25.
V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).
26.
V. E.
Zakharov
and
A. B.
Shabat
,
Sov. Phys. JETP
34
,
62
(
1972
).
27.
B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory: Self-Adjoint Ordinary Differential Operator (American Mathematical Society, Providence, RI, 1975).
28.
L. A.
Takhtajan
,
Phys. Lett. A
64
,
235
(
1977
).
29.
Z. J.
Qiao
,
Phys. Lett. A
186
,
97
(
1994
).
30.
Z. J. Qiao, “Generalized Lax algebra, r-matrices and algebraic geometry solutions for the integrable systems,” preprint, June 1996, Ph.D. thesis (10246/950011), Fudan University, China.
This content is only available via PDF.
You do not currently have access to this content.