The one-dimensional generalized Schrödinger equation for a system with smooth potential and mass step is resolved exactly. The wave function depends on the Heun’s function, which is a solution of a second-order Fuchsian equation with four singularities. The behavior of the transmission coefficient as a function of energy is compared to that of the case of an abrupt potential and mass step. Two limiting cases are also studied: when the width of the mass step is vanishing, and when the smooth potential and mass step tend to an abrupt potential and mass step.

1.
J.-P.
Peng
,
Y.-M.
Mu
, and
X.-C.
Shen
, “
Resonant level lifetime in the double barrier structure for both quasi-bound and extended states
,”
J. Appl. Phys.
73
,
989
991
(
1993
).
2.
R.
Kucharczyk
and
M.
Stȩslicka
, “
Density-of-states formalism for multi-quantum-barrier structures
,”
Solid State Commun.
84
,
727
730
(
1992
).
3.
F.
Berz
, “
Transmission coefficient and Stark shifts in double-barrier quantum well structures
,”
Semicond. Sci. Technol.
8
,
243
253
(
1993
).
4.
J. D.
Bruno
and
T. B.
Bahder
, “
Local density of states in double-barrier resonant-tunneling structures. II. Finite-width barriers
,”
Phys. Rev. B
39
,
3659
3663
(
1989
).
5.
M.
Stȩslicka
,
R.
Kucharczyk
, and
M. L.
Glasser
, “
Surface states in superlattices
,”
Phys. Rev. B
42
,
1458
1461
(
1990
).
6.
Qi-G.
Zhu
and
H.
Kroemer
, “
Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semi-conductors
,”
Phys. Rev. B
27
,
3519
3527
(
1983
).
7.
D. J.
Ben Daniel
and
C. B.
Duke
, “
Space-charge effects on electron tunneling
,”
Phys. Rev.
152
,
683
692
(
1966
).
8.
C. Weisbuck and B. Vinter, Quantum Semiconductor Structures (Academic, Boston, 1991).
9.
J.
Thomsen
,
G. T.
Einevoll
, and
P. C.
Hemmer
, “
Operator ordering in effective-mass theory
,”
Phys. Rev. B
39
,
12
783
12
788
(
1989
).
10.
R. A.
Morrow
and
K. R.
Brownstein
, “
Model effective-mass Hamiltonians for abrupt heterojunctions and the associated wave-function-matching conditions
,”
Phys. Rev. B
30
,
678
680
(
1984
).
11.
R. A.
Morrow
, “
Establishment of an effective-mass Hamiltonian for abrupt heterojunctions
,”
Phys. Rev. B
35
,
8074
8079
(
1987
).
12.
R. A.
Morrow
, “
Effective-mass Hamiltonians for abrupt heterojunctions in three dimensions
,”
Phys. Rev. B
36
,
4836
4840
(
1987
).
13.
G. T.
Einvoll
, “
Operator ordering in effective-mass theory for heterostructures. II. Strained systems
,”
Phys. Rev. B
42
,
3497
3502
(
1990
).
14.
K.
Young
, “
Position-dependent effective mass for inhomogeneous semiconductors
,”
Phys. Rev. B
39
,
13
434
13
441
(
1989
).
15.
G. T.
Einevoll
and
P. C.
Hemmer
, “
The effective-mass Hamiltonian for abrupt heterostructures
,”
J. Phys. C
21
,
L1193
L1198
(
1988
).
16.
O.
Von Roos
, “
Position-dependent effective masses in semiconductor theory
,”
Phys. Rev. B
27
,
7547
7552
(
1983
).
17.
W.
Trzeciakowski
, “
Boundary conditions and interface states in heterostructures
,”
Phys. Rev. B
38
,
4322
4325
(
1988
).
18.
I.
Galbraith
and
G.
Duggan
, “
Envelope-function matching conditions for GaAs/(Al, Ga)As heterojunctions
,”
Phys. Rev. B
38
,
10
057
10
059
(
1988
).
19.
T.
Gora
and
F.
Williams
, “
Theory of electronic states and transport in graded mixed semiconductors
,”
Phys. Rev.
177
,
1179
1182
(
1969
).
20.
O.
Von Roos
and
H.
Mavromatis
, “
Position-dependent effective masses in semiconductor theory. II
,”
Phys. Rev. B
31
,
2294
2298
(
1985
).
21.
G. T.
Einevoll
,
P. C.
Hemmer
, and
J.
Thomsen
, “
Operator ordering in effective-mass theory for heterostructures. I. Comparison with exact results for superlattices, quantum wells, and localized potentials
,”
Phys. Rev. B
42
,
3485
3496
(
1990
).
22.
J.-M.
Lévy-Leblond
, “
Position-dependent effective mass and Galilean invariance
,”
Phys. Rev. A
52
,
1845
1849
(
1995
).
23.
G.
Bastard
, “
Superlattice band structure in the envelope-function approximation
,”
Phys. Rev. B
24
,
5693
5697
(
1981
).
24.
L.
Chetouani
,
L.
Dekar
, and
T. F.
Hammann
, “
Green’s functions via path integrals for systems with position-dependent masses
,”
Phys. Rev. A
52
,
82
91
(
1995
).
25.
J.-M.
Lévy-Leblond
, “
Elementary quantum models with position-dependent mass
,”
Eur. J. Phys.
13
,
215
218
(
1992
).
26.
K.
Heun
, “
Zur Theorie der Riemann’schen Functionen zweiter Ordnung mit vier Verweigungspunkten
,”
Math. Ann.
33
,
161
179
(
1889
).
27.
K.
Heun
, “
Beiträge zur Theorie der Lamé’schen Functionen
,”
Math. Ann.
33
,
180
196
(
1889
).
28.
C. Snow, Hypergeometric and Legendre Functions With Applications to Integral Equations of Potential Theory, National Bureau of Standards Applied Mathematics Series, 1952, Vol. 19, Chap. VII, p. 87–101.
29.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1955), Vol. III, Sec. 15.3.
30.
A.
Erdélyi
, “
The Fuchsian equation of second order with four singularities
,”
Duke Math. J.
9
,
48
58
(
1942
).
31.
A.
Erdélyi
, “
Certain expansions of solutions of the Heun equation
,”
Q. J. Math. Oxford Ser.
15
,
62
69
(
1944
).
32.
S. Flügge, Practical Quantum Mechanics I (Springer-Verlag, Berlin, 1971), p. 86–89.
33.
L. Landau and E. Lifchitz, Mécanique Quantique (Mir, Moscou, 1967), pp. 100–101.
34.
Reference 28, p. 89, Eqs. (6a), (7), and (7′).
35.
Reference 28, p. 91, Eq. (9b).
36.
Reference 28, p. 88, Eq. (3).
37.
Reference 28, p. 98, Eqs. (20a) and (20b).
38.
Reference 28, p. 95, Eq. (16a).
39.
Reference 26, Sec. 4, pp. 173–179.
40.
I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, San Diego, 1994), Eq. (9.137.7).
This content is only available via PDF.
You do not currently have access to this content.