We extend the notion of dually conjugate Hopf (super)algebras to the colored Hopf (super)algebras Hc that we recently introduced. We show that if the standard Hopf (super)algebras Hq that are the building blocks of Hc have Hopf duals Hq*, then the latter may be used to construct coloured Hopf duals Hc*, endowed with colored algebra and antipode maps, but with a standard coalgebraic structure. Next, we review the case where the Hq’s are quantum universal enveloping algebras of Lie (super)algebras Uq(g), so that the corresponding Hq*’s are quantum (super)groups Gq. We extend the Fronsdal and Galindo universal 𝒯-matrix formalism to the colored pairs (Uc(g),Gc) by defining colored universal 𝒯-matrices. We then show that together with the colored universal ℛ-matrices previously introduced, the latter provide an algebraic formulation of the colored RTT-relations, proposed by Basu-Mallick. This establishes a link between the colored extensions of Drinfeld–Jimbo and Faddeev–Reshetikhin–Takhtajan pictures of quantum groups and quantum algebras. Finally, we illustrate the construction of colored pairs by giving some explicit results for the two-parameter deformations of (U(gl(2)),Gl(2)), and (U(gl(1/1)),Gl(1/1)).

1.
C.
Quesne
,
J. Math. Phys.
38
,
6018
(
1997
).
2.
C. Quesne, in Quantum Group Symposium at Group 21 (Proceedings of the Quantum Group Symposium at the XXI International Colloquium on Group Theoretical Methods in Physics, Goslar, 1996), edited by H. D. Doebner and V. K. Dobrev (Heron, Sofia, 1997), p. 219.
3.
V. V.
Bazhanov
and
Yu. G.
Stroganov
,
Theor. Math. Phys.
62
,
253
(
1985
);
L.
Hlavatý
,
J. Phys. A
20
,
1661
(
1987
);
R. J.
Baxter
,
J. H.
Perk
, and
H.
Au-Yang
,
Phys. Lett. A
128
,
138
(
1988
);
B. S.
Shastry
,
J. Stat. Phys.
50
,
57
(
1988
).
4.
The colored YBE, considered here and in I, should not be confused with the color YBE (Ref. 36) that arises when extending the graded YBE (Ref. 7) to more general gradings than that determined by Z2 (Ref. 37). As a consequence, our colored Hopf algebras are distinct from the Hopf color algebras (Ref. 36), generalizing Hopf superalgebras (Ref. 7) to such more general gradings.
5.
V. G.
Drinfeld
, in
Proceedings of the International Congress of Mathematicians,
Berkeley, CA,
1986
, edited by
A. M.
Gleason
(AMS, Providence, RI,
1987
), p.
798
;
M.
Jimbo
,
Lett. Math. Phys.
10
,
63
(
1985
);
M.
Jimbo
,
Lett. Math. Phys.
11
,
247
(
1986
).
6.
C.
Quesne, “Coloured Hopf algebras,” in
Proceedings of the Workshop on Special Functions and Differential Equations,
Chennai, India, January 13–24,
1997
(in press), q-alg/9705022.
7.
M.
Chaichian
and
P.
Kulish
,
Phys. Lett. B
234
,
72
(
1990
);
W. B.
Schmidke
,
S. P.
Volos
, and
B.
Zumino
,
Z. Phys. C
48
,
249
(
1990
).
8.
L. Faddeev, N. Reshetikhin, and L. Takhtajan, in Algebraic Analysis, edited by M. Kashiwara and T. Kawai (Academic, New York, 1988), Vol. 1, p. 129; in Braid Group, Knot Theory and Statistical Mechanics, edited by C. N. Yang and M. L. Ge (World Scientific, Singapore, 1989), p. 97.
9.
T. Ohtsuki, J. Knot Theor. Rami. 2, 211 (1993).
10.
D.
Bonatsos
,
P.
Kolokotronis
,
C.
Daskaloyannis
,
A.
Ludu
, and
C.
Quesne
,
Czech. J. Phys.
46
,
1189
(
1996
);
D.
Bonatsos
,
C.
Daskaloyannis
,
P.
Kolokotronis
,
A.
Ludu
, and
C.
Quesne
,
J. Math. Phys.
38
,
369
(
1997
).
11.
A.
Kundu
and
B.
Basu-Mallick
,
J. Phys. A
27
,
3091
(
1994
);
B.
Basu-Mallick
,
Mod. Phys. Lett. A
9
,
2733
(
1994
).
12.
B.
Basu-Mallick
,
Int. J. Mod. Phys. A
10
,
2851
(
1995
).
13.
S.
Majid
,
Int. J. Mod. Phys. A
5
,
1
(
1990
);
V. Chari and A. Pressley, A Guide to Quantum Groups (Cambridge University Press, Cambridge, 1994).
14.
C.
Fronsdal
and
A.
Galindo
,
Lett. Math. Phys.
27
,
59
(
1993
).
15.
C. Fronsdal and A. Galindo, Contemp. Math. 175, 73 (1994);
C. Fronsdal, in Noncompact Lie Groups and Some of Their Applications (San Antonio, TX, 1993), NATO Advanced Science Institute Series C Math. Phys. Sci. 429 (Kluwer, Dordrecht, 1994), p. 423.
16.
F.
Bonechi
,
E.
Celeghini
,
R.
Giachetti
,
C. M.
Pereña
,
E.
Sorace
, and
M.
Tarlini
,
J. Phys. A
27
,
1307
(
1994
).
17.
A. Morozov and L. Vinet, “Free-field representation of group element for simple quantum groups,” Université de Montréal preprint CRM-2202, hep-th/9409093, 1994.
18.
R.
Chakrabarti
and
R.
Jagannathan
,
Z. Phys. C
72
,
519
(
1996
).
19.
R. J.
Finkelstein
,
Lett. Math. Phys.
29
,
75
(
1993
).
20.
R.
Jagannathan
and
J.
Van der Jeugt
,
J. Phys. A
28
,
2819
(
1995
);
J.
Van der Jeugt
and
R.
Jagannathan
,
Czech. J. Phys.
46
,
269
(
1996
).
21.
R.
Chakrabarti
and
R.
Jagannathan
,
Lett. Math. Phys.
37
,
191
(
1996
).
22.
A.
Schirrmacher
,
J.
Wess
, and
B.
Zumino
,
Z. Phys. C
49
,
317
(
1991
).
23.
V. K.
Dobrev
,
J. Math. Phys.
33
,
3419
(
1992
).
24.
Č.
Burdík
and
P.
Hellinger
,
J. Phys. A
25
,
L629
(
1992
).
25.
R.
Chakrabarti
and
R.
Jagannathan
,
J. Phys. A
27
,
2023
(
1994
).
26.
In I, as well as in Secs. II and III of the present paper, we used the generic symbol qν, where ν behaved as a contravariant index, to denote the parameters of the final algebra under color group transformations. Since in this section, and in Sec. V, powers of the parameters make their appearance, to avoid confusion we slightly modify our notation qν into q(ν).
27.
It should be noted that the images of a,b,c,d under ρν or ρν belong to the larger enveloping algebra Up,q({α,β,γ,δ}).
28.
L.
Dabrowski
and
L.
Wang
,
Phys. Lett. B
266
,
51
(
1991
).
29.
R.
Chakrabarti
and
R.
Jagannathan
,
J. Phys. A
24
,
5683
(
1991
).
30.
M.
Bednář
,
Č.
Burdík
,
M.
Couture
, and
L.
Hlavatý
,
J. Phys. A
25
,
L341
(
1992
);
Č.
Burdík
and
R.
Tomášek
,
Lett. Math. Phys.
26
,
97
(
1992
).
31.
Č.
Burdík
and
P.
Hellinger
,
J. Phys. A
25
,
L1023
(
1992
).
32.
R.
Chakrabarti
and
R.
Jagannathan
,
Z. Phys. C
66
,
523
(
1995
).
33.
L. H.
Kauffman
and
H.
Saleur
,
Commun. Math. Phys.
141
,
293
(
1991
);
L.
Rozanskey
and
H.
Saleur
,
Nucl. Phys. B
376
,
461
(
1992
).
34.
H.
Hinrichsen
and
V.
Rittenberg
,
Phys. Lett. B
275
,
350
(
1992
).
35.
Although we use the same symbol to denote the duals of Up,q(gl(2)) and Up,q(gl(1/1)), there is of course no relation between them.
36.
D. S.
McAnally
, in
Proceedings of the Yamada Conference XL, XX International Colloquium on Group Theoretical Methods in Physics,
Toyonaka, Japan, July 4–9,
1994
, edited by A. Arima, T. Eguchi, and N. Nakanishi (World Scientific, Singapore,
1995
), p. 339.
37.
V.
Rittenberg
and
D.
Wyler
,
Nucl. Phys. B
139
,
189
(
1978
);
V.
Rittenberg
and
D.
Wyler
,
J. Math. Phys.
19
,
2193
(
1978
);
J.
Lukierski
and
V.
Rittenberg
,
Phys. Rev. D
18
,
385
(
1978
);
M.
Scheunert
,
J. Math. Phys.
20
,
712
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.