We give a new proof of the triple sum formula for Wigner 9j-symbols due to Ališauskas and Jucys. The proof uses explicit expressions for the coupling kernels recently introduced by the author. Parts of our results generalize to general recoupling coefficients.

1.
L. Biedenharn and J. Louck, Angular Momentum in Quantum Physics (Addison–Wesley, Reading, MA, 1981).
2.
L. Biedenharn and J. Louck, The Racah–Wigner Algebra in Quantum Theory (Addison–Wesley, Reading, MA, 1981).
3.
S. J.
Ališauskas
and
A. P.
Jucys
, “
Weight lowering operators and the multiplicity-free isoscalar factors of the group R5,
J. Math. Phys.
12
,
594
605
(
1971
).
4.
K.
Srinivasa Rao
,
V.
Rajeswari
, and
C. B.
Chiu
, “
A new Fortran program for the 9-j angular momentum coefficient
,”
Comput. Phys. Commun.
56
,
231
248
(
1989
).
5.
K.
Srinivasa Rao
and
V.
Rajeswari
, “
Polynomial zeros of the 9-j coefficient
,”
J. Phys. A
21
,
4255
4264
(
1988
).
6.
K.
Srinivasa Rao
,
S. N.
Pitre
, and
J.
Van der Jeugt
, “
The polynomial zeros of degree 2 of the 9-j coefficient
,”
Rev. Mex. Fı́s.
42
,
179
192
(
1996
).
7.
J.
Van der Jeugt
,
S. N.
Pitre
, and
K.
Srinivasa Rao
, “
Multiple hypergeometric functions and 9-j coefficients
,”
J. Phys. A
27
,
861
876
(
1994
).
8.
S. N.
Pitre
and
J.
Van der Jeugt
, “
Transformation and summation formulas for Kampé de Fériet series F1:10:3(1,1),
J. Math. Anal. Appl.
202
,
121
132
(
1996
).
9.
J.
Van der Jeugt
,
S. N.
Pitre
, and
K.
Srinivasa Rao
, “
Transformation and summation formulas for double hypergeometric series
,”
J. Comput. Appl. Math.
83
,
185
193
(
1997
).
10.
A. P. Jucys and A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics, 2nd ed. (Vilnius, City, 1977) (in Russian).
11.
H. Rosengren, “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations,” SIAM J. Math. Anal. (to appear).
12.
H.
Rosengren
, “
Multilinear Hankel forms of higher order and orthogonal polynomials
,”
Math. Scand.
82
,
53
88
(
1998
).
13.
R. Koekoek and R. F. Swarttouw, “The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue,” Delft University of Technology, 1998, available at ftp://unvie6.un.or.at/siam/opsf/koekoek_swarttouw.
14.
G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge University Press, Cambridge, 1990).
15.
P. W.
Karlsson
, “
Hypergeometric functions with integral parameter differences
,”
J. Math. Phys.
12
,
270
271
(
1971
).
16.
D. Zagier, “Introduction to modular forms,” in From Number Theory to Physics (Springer-Verlag, Berlin, 1992), pp. 238–291.
17.
P. B. Cohen, Yu. Manin, and D. Zagier, “Automorphic pseudodifferential operators,” in Algebraic Aspects of Integrable Systems (Birkhäuser, Boston, 1997), pp. 17–47.
18.
K.
Srinivasa Rao
and
V.
Rajeswari
, “
A note on the triple sum series for the 9j coefficient
,”
J. Math. Phys.
30
,
1016
1017
(
1989
).
19.
H. M.
Srivastava
, “
Generalized Neumann expansions involving hypergeometric functions
,”
Proc. Cambridge Philos. Soc.
63
,
425
429
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.