We give a new proof of the triple sum formula for Wigner -symbols due to Ališauskas and Jucys. The proof uses explicit expressions for the coupling kernels recently introduced by the author. Parts of our results generalize to general recoupling coefficients.
REFERENCES
1.
L. Biedenharn and J. Louck, Angular Momentum in Quantum Physics (Addison–Wesley, Reading, MA, 1981).
2.
L. Biedenharn and J. Louck, The Racah–Wigner Algebra in Quantum Theory (Addison–Wesley, Reading, MA, 1981).
3.
S. J.
Ališauskas
and A. P.
Jucys
, “Weight lowering operators and the multiplicity-free isoscalar factors of the group
” J. Math. Phys.
12
, 594
–605
(1971
).4.
K.
Srinivasa Rao
, V.
Rajeswari
, and C. B.
Chiu
, “A new Fortran program for the angular momentum coefficient
,” Comput. Phys. Commun.
56
, 231
–248
(1989
).5.
K.
Srinivasa Rao
and V.
Rajeswari
, “Polynomial zeros of the coefficient
,” J. Phys. A
21
, 4255
–4264
(1988
).6.
K.
Srinivasa Rao
, S. N.
Pitre
, and J.
Van der Jeugt
, “The polynomial zeros of degree 2 of the coefficient
,” Rev. Mex. Fı́s.
42
, 179
–192
(1996
).7.
J.
Van der Jeugt
, S. N.
Pitre
, and K.
Srinivasa Rao
, “Multiple hypergeometric functions and coefficients
,” J. Phys. A
27
, 861
–876
(1994
).8.
S. N.
Pitre
and J.
Van der Jeugt
, “Transformation and summation formulas for Kampé de Fériet series
” J. Math. Anal. Appl.
202
, 121
–132
(1996
).9.
J.
Van der Jeugt
, S. N.
Pitre
, and K.
Srinivasa Rao
, “Transformation and summation formulas for double hypergeometric series
,” J. Comput. Appl. Math.
83
, 185
–193
(1997
).10.
A. P. Jucys and A. A. Bandzaitis, Theory of Angular Momentum in Quantum Mechanics, 2nd ed. (Vilnius, City, 1977) (in Russian).
11.
H. Rosengren, “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations,” SIAM J. Math. Anal. (to appear).
12.
H.
Rosengren
, “Multilinear Hankel forms of higher order and orthogonal polynomials
,” Math. Scand.
82
, 53
–88
(1998
).13.
R. Koekoek and R. F. Swarttouw, “The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue,” Delft University of Technology, 1998, available at ftp://unvie6.un.or.at/siam/opsf/koekoek_swarttouw.
14.
G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge University Press, Cambridge, 1990).
15.
P. W.
Karlsson
, “Hypergeometric functions with integral parameter differences
,” J. Math. Phys.
12
, 270
–271
(1971
).16.
D. Zagier, “Introduction to modular forms,” in From Number Theory to Physics (Springer-Verlag, Berlin, 1992), pp. 238–291.
17.
P. B. Cohen, Yu. Manin, and D. Zagier, “Automorphic pseudodifferential operators,” in Algebraic Aspects of Integrable Systems (Birkhäuser, Boston, 1997), pp. 17–47.
18.
K.
Srinivasa Rao
and V.
Rajeswari
, “A note on the triple sum series for the coefficient
,” J. Math. Phys.
30
, 1016
–1017
(1989
).19.
H. M.
Srivastava
, “Generalized Neumann expansions involving hypergeometric functions
,” Proc. Cambridge Philos. Soc.
63
, 425
–429
(1967
).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics
You do not currently have access to this content.