We use a variational principle proven by Giannoni et al. [J. Math. Phys. 38, 6367–6381 (1997)] for relativistic brachistochrones and techniques of global analysis to develop an existence theory for brachistochrones in stationary space–times. We also develop a Ljusternik–Schnirelman theory for brachistochrones, obtaining multiplicity results depending on the topology of the space–time.
REFERENCES
1.
F.
Goldstein
and C. M.
Bender
, “Relativistic Brachistochrone
,” J. Math. Phys.
27
, 507
–511
(1985
).2.
G.
Kamath
, “The brachistochrone in almost flat space
,” J. Math. Phys.
29
, 2268
–2272
(1988
).3.
V.
Perlick
, “The brachistochrone problem in a stationary space–time
,” J. Math. Phys.
32
, 3148
–3157
(1991
).4.
F.
Giannoni
, P.
Piccione
, and J. A.
Verderesi
, “An approach to the relativistic brachistochrone problem by sub–Riemannian geometry
,” J. Math. Phys.
38
, 6367
–6381
(1997
).5.
V. Perlick and P. Piccione (unpublished).
6.
J. K. Beem, P. E. Ehrlich, and K. L. Easly, Global Lorentzian Geometry (Dekker, New York, 1996).
7.
S. W. Hawking and G. F. Ellis, The Large Scale Structure of Space–Time (Cambridge University Press, London, 1973).
8.
B. O’Neill, Semi–Riemannian Geometry with Applications to Relativity (Academic, New York, 1983).
9.
J. P.
Serre
, “Homologie singuliere des espaces fibres
,” Ann. Math.
54
, 425
–505
(1951
).10.
R. Palais, Foundations of Global Nonlinear Analysis (Benjamin, New York, 1968).
11.
V.
Benci
, D.
Fortunato
, and F.
Giannoni
, “On the existence of geodesics in static Lorentz manifolds with nonsmooth boundary
,” Ann. Sci. Norm. Sup. Serie IV
XIX
, 255
–289
(1992
).12.
J.
Nash
, “The embedding problem for riemannian manifolds
,” Ann. Math.
63
, 20
–63
(1956
).13.
E.
Fadell
and S.
Husseini
, “Category of loop spaces of open subsets in Euclidean spaces
,” Nonlinear Analysis: Theory, Methods and Applications
17
, 1153
–1161
(1991
).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics
You do not currently have access to this content.