We use a variational principle proven by Giannoni et al. [J. Math. Phys. 38, 6367–6381 (1997)] for relativistic brachistochrones and techniques of global analysis to develop an existence theory for brachistochrones in stationary space–times. We also develop a Ljusternik–Schnirelman theory for brachistochrones, obtaining multiplicity results depending on the topology of the space–time.

1.
F.
Goldstein
and
C. M.
Bender
, “
Relativistic Brachistochrone
,”
J. Math. Phys.
27
,
507
511
(
1985
).
2.
G.
Kamath
, “
The brachistochrone in almost flat space
,”
J. Math. Phys.
29
,
2268
2272
(
1988
).
3.
V.
Perlick
, “
The brachistochrone problem in a stationary space–time
,”
J. Math. Phys.
32
,
3148
3157
(
1991
).
4.
F.
Giannoni
,
P.
Piccione
, and
J. A.
Verderesi
, “
An approach to the relativistic brachistochrone problem by sub–Riemannian geometry
,”
J. Math. Phys.
38
,
6367
6381
(
1997
).
5.
V. Perlick and P. Piccione (unpublished).
6.
J. K. Beem, P. E. Ehrlich, and K. L. Easly, Global Lorentzian Geometry (Dekker, New York, 1996).
7.
S. W. Hawking and G. F. Ellis, The Large Scale Structure of Space–Time (Cambridge University Press, London, 1973).
8.
B. O’Neill, Semi–Riemannian Geometry with Applications to Relativity (Academic, New York, 1983).
9.
J. P.
Serre
, “
Homologie singuliere des espaces fibres
,”
Ann. Math.
54
,
425
505
(
1951
).
10.
R. Palais, Foundations of Global Nonlinear Analysis (Benjamin, New York, 1968).
11.
V.
Benci
,
D.
Fortunato
, and
F.
Giannoni
, “
On the existence of geodesics in static Lorentz manifolds with nonsmooth boundary
,”
Ann. Sci. Norm. Sup. Serie IV
XIX
,
255
289
(
1992
).
12.
J.
Nash
, “
The embedding problem for riemannian manifolds
,”
Ann. Math.
63
,
20
63
(
1956
).
13.
E.
Fadell
and
S.
Husseini
, “
Category of loop spaces of open subsets in Euclidean spaces
,”
Nonlinear Analysis: Theory, Methods and Applications
17
,
1153
1161
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.