We find the general solution to the twisting equation in the tensor bialgebra T(R) of an associative unital ring R viewed as that of fundamental representation for a universal enveloping Lie algebra and its quantum deformations. We suggest a procedure of constructing twisting cocycles belonging to a given quasitriangular sub-bialgebra H⊂T(R). This algorithm generalizes Reshetikhin’s approach, which involves cocycles fulfilling the Yang–Baxter equation. Within this framework we study a class of quantized inhomogeneous Lie algebras related to associative rings in a certain way, for which we build twisting cocycles and universal R-matrices. Our approach is a generalization of the methods developed for the case of commutative rings in our recent work including such well-known examples as Jordanian quantization of the Borel subalgebra of sl(2) and the null-plane quantized Poincaré algebra by Ballesteros et al. We reveal the role of special group 1-cocycles in this process and establish the bi-crossproduct structure of the examples studied.

1.
V. G.
Drinfeld
, “
On constant quasiclassical solutions to the quantum Yang-Baxter equation
,”
Dokl. Akad. Nauh. USSR
273
,
531
535
(
1983
).
2.
V. G.
Drinfeld
, “
Quasi-Hopf algebras
,”
Leningrad Math. J.
1
,
1419
1457
(
1990
).
3.
S.
Majid
, “
Crossproduct quantization, nonabelian cohomology and twisting of Hopf algebras
,” hep-th/9311184.
4.
V. G. Drinfeld, “Quantum groups,” in Proceedings of the International Congress of Mathematicians, Berkeley, 1986, edited by A. V. Gleason (American Mathematical Society, Providence, 1987), pp. 798–820.
5.
N. Yu.
Reshetikhin
and
M. A.
Semenov-Tian-Shansky
, “
Quantum R-matrices and factorization problems
,”
J. Geom. Phys.
5
,
533
550
(
1988
).
6.
S.
Majid
, “
Some remarks on the Quantum Double
,”
Czech. J. Phys.
44
,
1059
1071
(
1994
).
7.
E.
Beggs
and
S.
Majid
, “
Quasitriangular and differential structures on bicrossproduct Hopf algebras
,” q-alg/9701041.
8.
J.
Lukierski
,
H.
Ruegg
,
V. N.
Tolstoy
, and
A.
Nowicki
, “
q-Deformation of Poincaré algebra
,”
Phys. Lett. B
264
,
331
338
(
1991
).
9.
S.
Majid
and
H.
Ruegg
, “
Bicrossproduct structure of κ-Poincaré group and non-commutative geometry
,” hep-th/9405107.
10.
A.
Ballesteros
,
F. J.
Herranz
,
V. A.
del Olmo
, and
M.
Santander
, “
A new ‘null-plane’ quantization of quantum Poincaré algebra
,”
Phys. Lett. B
351
,
137
145
(
1995
).
11.
O.
Arratia
,
F. J.
Herranz
, and
M. A.
del Olmo
, “
Bicrossproduct structure of the null-plane quantum Poincaré algebra
,”
J. Phys. A: Math. Gen.
31
,
L1
L7
(
1998
).
12.
A. I.
Mudrov
, “
Twisting cocycle for null-plane quantized Poincaré algebra
,”
J. Phys. A
31
,
6219
6224
(
1998
).
13.
N. Yu.
Reshetikhin
, “
Multiparametric quantum groups and twisted quasitriangular Hopf algebras
,”
Lett. Math. Phys.
20
,
331
335
(
1990
).
14.
A. Kempt, “Multiparameter R-matrices sub-quantum groups and generalized twisting method,” in Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, June 1991, New York, edited by S. Catto and A. Rocha (World Scientific, Singapore, 1991), p. 546.
15.
R. A.
Engeldinger
and
A.
Kempf
, “
Sub-Hopf-algebra-induced twists of quantum enveloping algebras
,”
J. Math. Phys.
35
,
1931
1938
(
1994
).
16.
N. Yu.
Reshetikhin
,
L. A.
Takhtajan
, and
L. D.
Faddeev
, “
Quantization of Lie groups and Lie algebras
,”
Leningrad Math. J.
1
,
193
225
(
1990
).
17.
O. Ogievetski, “Hopf structures on the Borel subalgebra of sl(2),” Max-Planck-Institut report No. VPI-Ph/92-99.
18.
A.
Ballesteros
,
F. J.
Herranz
, and
C. M.
Perena
, “
Null-plane quantum universal ℛ-matrix
,”
Phys. Lett. B
351
,
71
(
1997
).
19.
A. Guichardet, Cohomologie des groupes topologiques et des algebres de Lie (Cedic/Fernand Nathan, Paris, 1980).
20.
T.
Hodges
, “
On the Cremmer-Gervais quantization of SL(n)
,” q-alg/9506018.
21.
T.
Hodges
, “
Nonstandard quantum groups associated to certain Belavin–Drinfeld triples
,” q-alg/9603029.
22.
A. D.
Jacobs
and
J. F.
Cornwell
, “
Twisting 2-cocycles for the construction of new non-standard quantum groups
,” q-alg/9702028.
23.
A. I.
Mudrov
, “
Quantum deformations of the Lorentz algebra
,”
Phys. At. Nucl.
60
,
848
859
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.