We compute the Fourier transform (ρ(L)) of the quantum mechanical energy level density for the problem of a particle in a two-dimensional circular infinite well (or circular billiard) as well as for several special generalizations of that geometry, namely the half-well, quarter-well, and the circular well with a thin, infinite wall along the positive x-axis (hereafter called a circular well plus baffle). The resulting peaks in plots of |ρ(L)|2 versus L are compared to the lengths of the classical closed trajectories in these geometries as a simple example of the application of periodic orbit (PO) theory to a billiard or infinite well system. We then solve the Schrödinger equation for the general case of a circular well with infinite walls both along the positive x-axis and at an arbitrary angle Θ (a circular “slice”) for which the half-well (Θ=π), quarter-well (Θ=π/2), and circular well plus baffle (Θ=2π) are then all special cases. We perform a PO theory analysis of this general system and calculate |ρ(L)|2 for many intermediate values of Θ to examine how the peaks in ρ(L) attributed to periodic orbits change as the quasi-circular wells are continuously transformed into each other. We explicitly examine the transitions from the half-circular well to the circle plus baffle case (half-well to quarter-circle case) as Θ changes continuously from π to 2π (from π to π/2) in detail. We then discuss the general Θ→0 limit, paying special attention to the cases where Θ=π/2n, as well as deriving the formulae for the lengths of closed orbits for the general case. We find that such a periodic orbit theory analysis is of great benefit in understanding and visualizing the increasingly complex pattern of closed orbits as Θ→0.

1.
M. C.
Gutzwiller
,
J. Math. Phys.
11
,
1791
(
1970
).
2.
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, Berlin, 1990).
3.
R. Balian and C. Bloch, Ann. Phys. 69, 76 (1972).
4.
M. V. Berry, in Chaotic Behavior of Deterministic Systems, Proceedings of the Les Houches Summer School, Session XXXVI, edited by G. Iooss. R. H. G. Helleman, and R. Stora (North-Holland, Amsterdam, 1983), pp. 171–272.
5.
For a recent, thorough review of many aspects of periodic orbit theory, see M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, MA, 1997).
6.
M. L.
Du
and
J. B.
Delos
,
Phys. Rev. A
38
,
1896
(
1988
).
7.
D.
Wintgen
,
Phys. Rev. Lett.
58
,
1589
(
1987
);
A.
Holle
,
J.
Main
,
G.
Weibusch
,
H.
Rottke
, and
K. H.
Welge
,
Phys. Rev. Lett.
61
,
161
(
1988
);
H.
Friedrich
and
D.
Wintgen
,
Phys. Rep.
183
,
37
(
1989
).
8.
J.
Gao
and
J. B.
Delos
,
Phys. Rev. A
49
,
869
(
1994
);
M.
Courtney
,
H.
Jiao
,
N.
Spellmeyer
,
D.
Kleppner
,
J.
Gao
, and
J. B.
Delos
,
Phys. Rev. Lett.
74
,
1538
(
1995
).
9.
K. Nakamura, Quantum Chaos: A New Paradigm of Nonlinear Dynamics (Cambridge University Press, Cambridge, 1993).
10.
M.
Brack
and
S. R.
Jain
,
Phys. Rev. A
51
,
3462
(
1995
).
11.
H.-J.
Stöckman
and
J.
Stein
,
Phys. Rev. Lett.
64
,
2215
(
1990
).
12.
B.
Tatievski
,
P.
Stampfli
, and
K. H.
Bennemann
,
Comput. Mater. Sci.
2
,
459
(
1994
).
13.
V. M.
Strutinsky
,
A. G.
Magner
,
S. R.
Ofengenden
, and
T.
Do/ssing
,
Z. Phys. A
283
,
269
(
1977
);
V. M.
Strutinskiĭ
and
A. G.
Magner
,
Sov. J. Part. Nucl.
7
,
138
(
1976
).
14.
O.
Bohigas
,
D.
Boosé
,
R.
Egydio de Carvalho
, and
V.
Marvulle
,
Nucl. Phys. A
560
,
197
(
1993
).
15.
K.
Richter
,
D.
Ullmo
, and
R. A.
Jalabert
,
Phys. Rep.
276
,
1
(
1996
).
16.
G.
Vattay
,
A.
Wirzba
, and
P. E.
Rosenqvist
,
Phys. Rev. Lett.
73
,
2304
(
1994
).
17.
N.
Pavloff
and
C.
Schmit
,
Phys. Rev. Lett.
75
,
61
(
1995
).
18.
H.
Primack
,
H.
Schanz
,
Y.
Smilansky
, and
I.
Ussishkin
,
Phys. Rev. Lett.
76
,
1615
(
1996
).
19.
S. M. Reimann, M. Brack, A. G. Magner, and M. V. N. Murthy, Surf. Rev. Lett. 3, 19 (1996). See also an extensive discussion with references to other unpublished work in Ref. 5.
20.
R. W. Robinett, to appear in Surf. Rev. Lett.
21.
T.
Szerdi
and
D. A.
Goodings
,
Phys. Rev. Lett.
69
,
1640
(
1992
);
T.
Szerdi
and
D. A.
Goodings
,
Phys. Rev. E
48
,
3518
(
1993
);
T.
Szerdi
and
D. A.
Goodings
,
Phys. Rev. E
48
,
5329
(
1993
).
22.
For references to the original literature, see R. Balian and C. Bloch, Ann. Phys. 60, 401 (1970).
23.
M. V.
Berry
,
Eur. J. Phys.
2
,
91
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.