Methods for algebraically determining the signs and the magnitudes of Lyapunov exponents of a given dynamical system are studied. The existence of zero Lyapunov exponents for the Toda, Hénon–Heiles, and Rössler systems are shown. The approximate Lyapunov spectra of Lorenz and Rössler systems are computed.
REFERENCES
1.
Ya. B.
Pesin
, Russ. Math. Surv.
4
, 55
(1977
).2.
3.
4.
5.
6.
7.
8.
J.-P.
Eckmann
, S. O.
Kamphorst
, D.
Ruelle
, and S.
Ciliberto
, Phys. Rev. A
34
, 4971
(1986
).9.
10.
11.
12.
A. M. O. De Almeida, Hamiltonian Systems: Chaos and Quantization (Cambridge U. P., New York, 1988).
13.
14.
15.
16.
17.
18.
19.
20.
21.
İ.
Birol
, A.
Hacinliyan
and N. Z.
Perdahci
, Proc. of ISCIS IX, Antalya
, 2
, 543
(1996
).
This content is only available via PDF.
© 1997 American Institute of Physics.
1997
American Institute of Physics
You do not currently have access to this content.