Methods for algebraically determining the signs and the magnitudes of Lyapunov exponents of a given dynamical system are studied. The existence of zero Lyapunov exponents for the Toda, Hénon–Heiles, and Rössler systems are shown. The approximate Lyapunov spectra of Lorenz and Rössler systems are computed.

1.
Ya. B.
Pesin
,
Russ. Math. Surv.
4
,
55
(
1977
).
2.
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
De Luca
,
Physica D
65
,
117
(
1993
).
3.
H.
Kantz
,
Phys. Lett. A
185
,
77
(
1994
).
4.
C.
Amitrano
and
R. S.
Berry
,
Phys. Rev. E
47
,
3158
(
1993
).
5.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
,
Physica D
16
,
285
(
1985
).
6.
W. E.
Wiesel
,
Phys. Rev. E
47
,
3686
(
1993
).
7.
W. E.
Wiesel
,
Phys. Rev. E
47
,
3692
(
1993
).
8.
J.-P.
Eckmann
,
S. O.
Kamphorst
,
D.
Ruelle
, and
S.
Ciliberto
,
Phys. Rev. A
34
,
4971
(
1986
).
9.
G.
Roepstorff
,
J. Math. Phys.
34
,
5221
(
1993
).
10.
K.
Geist
,
U.
Parlitz
, and
W.
Lauterborn
,
Prog. Theor. Phys.
83
,
875
(
1990
).
11.
H.
Haken
,
Phys. Lett. A
94
,
71
(
1983
).
12.
A. M. O. De Almeida, Hamiltonian Systems: Chaos and Quantization (Cambridge U. P., New York, 1988).
13.
M.
Toda
,
Prog. Theor. Phys. Suppl.
45
,
174
(
1970
).
14.
M.
Hénon
and
C.
Heiles
,
Astron. J.
69
,
73
(
1969
).
15.
H.
Yoshida
,
A.
Ramani
, and
B.
Gramaticos
,
Physica D
30
,
151
(
1988
).
16.
F. C.
Gustavson
,
Astron. J.
71
,
670
(
1966
).
17.
P.
Finkler
,
C. E.
Jones
, and
G. A.
Sowell
,
Phys. Rev. A
42
,
1931
(
1990
);
P.
Finkler
,
C. E.
Jones
, and
G. A.
Sowell
,
44
,
925
(
1991
); ,
Phys. Rev. A
P.
Finkler
,
C. E.
Jones
, and
G. A.
Sowell
,
Phys. Rev. E
48
,
2288
(
1993
).
18.
İ.
Birol
, and
A.
Hacinliyan
,
Phys. Rev. E
52
,
4750
(
1995
).
19.
O. E.
Rössler
,
Phys. Lett. A
57
,
397
(
1976
).
20.
E. N.
Lorenz
,
J. Atmos. Sci.
20
,
130
(
1963
).
21.
İ.
Birol
,
A.
Hacinliyan
and
N. Z.
Perdahci
,
Proc. of ISCIS IX, Antalya
,
2
,
543
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.