Gamma matrices for quantum Minkowski spaces are found. The invariance of the corresponding Dirac operator is proven. We introduce momenta for spin 1/2 particles and get (in certain cases) formal solutions of the Dirac equation.

1.
P.
Podleś
and
S. L.
Woronowicz
, “
On the classification of quantum Poincaré groups
,”
Commun. Math. Phys.
178
,
61
82
(
1996
).
2.
P.
Podleś
, “
Solutions of Klein-Gordon and Dirac equations on quantum Minkowski spaces
,”
Commun. Math. Phys.
181
,
569
585
(
1996
).
3.
P.
Podleś
and
S. L.
Woronowicz
, “
Quantum deformation of Lorentz group
,”
Commun. Math. Phys.
130
,
381
431
(
1990
).
4.
U.
Carow-Watamura
,
M.
Schlieker
,
M.
Scholl
and
S.
Watamura
, “
Tensor representation of the quantum group SLq(2,C) and quantum Minkowski space
,”
Z. Phys. C
48
,
159
165
(
1990
);
A quantum Lorentz group
,”
Int. J. Mod. Phys. A
6
,
3081
3108
(
1991
).
5.
X.-C.
Song
, “
Covariant differential calculus on quantum Minkowski space and the q-analogue of Dirac equation
,”
Z. Phys. C
55
,
417
422
(
1992
).
6.
A. Schirrmacher, “Quantum groups, quantum spacetime, and Dirac equation,” in Low-Dimensional Topology and Quantum Field Theory, edited by H. Osborn (Plenum, New York, 1993), pp. 221–230.
7.
J. A.
de Azcárraga
,
P. P.
Kulish
, and
F.
Rodenas
, “
Quantum groups and deformed special relativity
,”
Fortschr. Phys.
44
,
1
40
(
1996
).
8.
P. Podleś, Talk “Dirac equation and gamma matrices for quantum Minkowski spaces,” 5th International colloquium “Quantum groups and integrable systems,” Prague, 20–22 June 1996.
9.
J. A. de Azcárraga, P. P. Kulish, and F. Rodenas, “Twisted h-spacetimes and invariant equations,” q-alg/9702026, to appear in Z. Phys. C (1997).
10.
S. L.
Woronowicz
and
S.
Zakrzewski
, “
Quantum deformations of the Lorentz group. The Hopf *-algebra level
,”
Comput. Math.
90
,
211
243
(
1994
).
11.
M.
Chaichian
and
A. P.
Demichev
, “
Quantum Poincaré group
,”
Phys. Lett. B
304
,
220
224
(
1993
).
12.
N. Yu.
Reshetikhin
,
L. A.
Takhtadzyan
, and
L. D.
Faddeev
, “
Quantization of Lie groups and Lie algebras
,”
Leningrad Math. J.
1
(
1
),
193
225
(
1990
)
N. Yu.
Reshetikhin
,
L. A.
Takhtadzyan
, and
L. D.
Faddeev
, [[
Alg. anal.
1
(
1
),
178
206
(
1989
)].
13.
P.
Podleś
and
S. L.
Woronowicz
, “
On the structure of inhomogeneous quantum groups
,” hep-th/9412058,
Commun. Math. Phys.
185
,
325
358
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.