We consider a particular four-dimensional generalization of the transition from the Heisenberg to the Schrödinger picture. The space–time independent expansion with respect to the unitary irreducible representations of the Lorentz group is applied, as Fourier transformation in the Heisenberg picture, to the states of a massive relativistic particle. A new Hamilton operator has been found for such a particle with spin one.
REFERENCES
1.
2.
3.
E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York, 1959).
4.
V.
Bargmann
and E. P.
Wigner
, Proc. Natl. Acad. U. S. A.
34
, 211
(1948
).5.
6.
M. A. Naimark, Linear Representations of the Lorentz Group (Pergamon, London, 1964).
7.
I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications (Pergamon, Oxford, 1963).
8.
9.
W. Rühl, The Lorentz Group and Harmonic Analysis (Benjamin, New York, 1970).
10.
A. O. Barut and R. Raczka, Theory of Group Representations and Applications (Polish Scientific Publishers, Warsaw, 1971).
11.
V. G.
Kadyshevsky
, R. M.
Mir-Kasimov
, and N. B.
Skachkov
, Nuovo Ciment. A
55
, 233
(1968
);V. G.
Kadyshevsky
, R. M.
Mir-Kasimov
, and N. B.
Skachkov
, Sov. J. Part. Nucl.
2
, 69
(1973
).12.
13.
14.
15.
I. V.
Amirkhanov
, G. V.
Grusha
, and R. M.
Mir-Kasimov
, Sov. J. Part. Nucl.
12
, 3
(1981
).16.
17.
E. D.
Kagramanov
, R. M.
Mir-Kasimov
, and Sh. M.
Nagiyev
, J. Math. Phys.
31
, 1733
(1990
).18.
19.
This content is only available via PDF.
© 1997 American Institute of Physics.
1997
American Institute of Physics
You do not currently have access to this content.