A recently proposed definition of a linear connection in noncommutative geometry, based on a generalized permutation, is used to construct linear connections on Restrictions on the generalized permutation arising from the stability of linear connections under involution are discussed. Candidates for generalized permutations on are found. It is shown that, for a given generalized permutation, there exists one and only one associated linear connection. Properties of the linear connection are discussed, in particular its bicovariance, torsion, and commutative limit.
REFERENCES
1.
E. K.
Sklyanin
, L. A.
Takhtadzhyan
, and L. D.
Faddeev
, I. Theoret. Mat. Fiz.
40
, 194
(1979
).2.
P. P.
Kulish
and N. Yu.
Reshetikhin
, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
101
, 101
(1981
).3.
Quantum Groups, Proc. Int. Congr. Math. (Berkley), Vol. 1 (Academic, New York, 1986), pp. 798–820.
4.
5.
6.
Yu. I. Manin, “Quantum groups and non-commutative geometry,” Preprint CRM-1561, Montréal (1988).
7.
[ English translation:
Leningrad Math. J.
1
, 193
(1990
)].8.
A.
Connes
, Non-commutative differential geometry, Inst. Hautes Etudes Sci. Publ. Math.
62
(1986
).9.
10.
11.
12.
13.
P.
Schupp
, P.
Watts
, and B.
Zumino
, Lett. Math. Phys.
25
, 139
(1992
).14.
A. Schirrmacher, “Remarks on use of R-matrices,” in Proceedings of the first Max Born Symposium, edited by R. Gielerak et al., (Kluwer Academic, Dordrecht, 1992), p. 55.
15.
16.
17.
J. Madore, Introduction to non-commutative geometry and its physical applications (Cambridge U.P., Cambridge, 1995).
18.
W. Kalau and M. Walze, “Gravity, non-commutative geometry and the Wodzicki residue,” Preprint MZ-TH 93–38.
19.
D. Kastler, “The Dirac operator and gravitation,” Preprint CPT 93/P. 2970.
20.
21.
22.
A. H.
Chamseddine
, G.
Felder
, and J.
Fröhlich
, Commun. Math. Phys.
155
, 205
(1993
).23.
24.
25.
M. Dubois-Violette and P. Michor, “Connections on central bimodules,” Preprint LPTHE 94/100.
26.
27.
B. Zumino, “Differential calculus on quantum spaces and quantum groups,” Preprint LBL-33249, UCB-PTH-92/41.
28.
29.
U.
Carow-Watamura
, M.
Schlieker
, S.
Watamura
, and W.
Weich
, Commun. Math. Phys.
142
, 605
(1991
).30.
L. D. Faddeev, and P. N. Pyatov, “The differential calculus on quantum linear groups,” Preprint, hep-th 9402070.
31.
J.
Madore
, T.
Masson
, and J.
Mourad
, Class. Quant. Grav.
12
, 1429
(1995
).32.
M.
Dubois-Violette
, J.
Madore
, T.
Masson
, and J.
Mourad
, Lett. Math. Phys.
35
, 351
(1995
).
This content is only available via PDF.
© 1997 American Institute of Physics.
1997
American Institute of Physics
You do not currently have access to this content.