Using the torus action method, we construct a one-variable polynomial representation of quantum cohomology ring for degree k hypersurface in CPN−1. The results interpolate the well-known result of CPN−2 model and the one of Calabi–Yau hypersuface in CPN−1. We find in the k⩽N−2 case, the principal relation of this ring has a very simple form compatible with toric compactification of moduli space of holomorphic maps from CP1 to CPN−1.

1.
P.
Candelas
,
X.
de la Ossa
,
P.
Green
, and
L.
Parkes
,
Phys. Lett. B
258
,
118
(
1991
);
P.
Candelas
,
X.
de la Ossa
,
P.
Green
, and
L.
Parkes
,
Nucl. Phys. B
359
,
21
(
1991
).
2.
M.
Bershadsky
,
S.
Cecotti
,
H.
Ooguri
, and
C.
Vafa
, “
Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes
,”
Nucl. Phys. B
405
,
279
(
1993
).
3.
M. Jinzenji and M. Nagura, “Mirror Symmetry and An Exact Calculation of N/2 point Correlation Function on Calabi-Yau Manifold embedded in CPN−1,” UT-680.
4.
M. Kontsevich, and Y. Manin, “Gromov-Witten Classes, Quantum Cohomology, and Enumerative Geometry,” hep-th 9402147.
5.
B. Dubrovin, “Geometry of 2D Topological Field Theory,” Preprint SISSA-89/94/FM, hep-th 9407018.
6.
T.
Eguchi
, and
S. K.
Yang
, “
The Topological CP1 Model And The Large N Matrix Integral
,”
Phys. Lett. A
9
, (
31
),
2893
(
1994
).
7.
K.
Intrigator
, “
Fusion residues
,”
Mod. Phys. Lett. A
6
, (
38
),
3543
(
1991
).
8.
A. Bertram, “Modular Schubert Calculus,” University of Utah Preprint (1994).
9.
J. Li and G. Tian, “Quantum Cohomology of Homogeneous Varieties,” preprint.
10.
M. Kontsevich, “Enumeration of Rational Curves via Torus Actions,” hep-th 9405035.
11.
D. R. Morrison, and M. R. Plesser, “Summing the Instantons: Quantum Cohomology and Mirror Symmetry in Toric Varieties,” DUKE-TH-94–78, IASSNS-HEP-94/82, hep-th 9412236.
12.
K. Hori, “Constraints for Topological Strings in D≪1,” UT-694.
13.
P. S.
Aspinwall
and
D. R.
Morrison
, “
Topological field theory and rational curves
,”
Commun. Math. Phys.
151
,
245
(
1993
).
14.
M. Jinzenji (in preparation).
15.
B. R. Greene, D. R. Morrison, and M. R. Plesser, “Mirror Manifolds in Higher Dimension,” CLNS-93/1253, IASSNSHEP-HEP-94/2, YCTP-P31–92.
16.
M. Jinzenji, “Construction of Free Energy of Calabi-Yau Manifold embedded in CPN−1 via Torus Actions,” UT-HEP-703–95.
17.
C. Vafa, “Topological Mirrors and Quantum Rings,” HUTP-91/A059.
This content is only available via PDF.
You do not currently have access to this content.