Using the torus action method, we construct a one-variable polynomial representation of quantum cohomology ring for degree hypersurface in The results interpolate the well-known result of model and the one of Calabi–Yau hypersuface in We find in the case, the principal relation of this ring has a very simple form compatible with toric compactification of moduli space of holomorphic maps from to
REFERENCES
1.
P.
Candelas
, X.
de la Ossa
, P.
Green
, and L.
Parkes
, Phys. Lett. B
258
, 118
(1991
);P.
Candelas
, X.
de la Ossa
, P.
Green
, and L.
Parkes
, Nucl. Phys. B
359
, 21
(1991
).2.
M.
Bershadsky
, S.
Cecotti
, H.
Ooguri
, and C.
Vafa
, “Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes
,” Nucl. Phys. B
405
, 279
(1993
).3.
M. Jinzenji and M. Nagura, “Mirror Symmetry and An Exact Calculation of N/2 point Correlation Function on Calabi-Yau Manifold embedded in ,” UT-680.
4.
M. Kontsevich, and Y. Manin, “Gromov-Witten Classes, Quantum Cohomology, and Enumerative Geometry,” hep-th 9402147.
5.
B. Dubrovin, “Geometry of 2D Topological Field Theory,” Preprint SISSA-89/94/FM, hep-th 9407018.
6.
T.
Eguchi
, and S. K.
Yang
, “The Topological Model And The Large N Matrix Integral
,” Phys. Lett. A
9
, (31
), 2893
(1994
).7.
K.
Intrigator
, “Fusion residues
,” Mod. Phys. Lett. A
6
, (38
), 3543
(1991
).8.
A. Bertram, “Modular Schubert Calculus,” University of Utah Preprint (1994).
9.
J. Li and G. Tian, “Quantum Cohomology of Homogeneous Varieties,” preprint.
10.
M. Kontsevich, “Enumeration of Rational Curves via Torus Actions,” hep-th 9405035.
11.
D. R. Morrison, and M. R. Plesser, “Summing the Instantons: Quantum Cohomology and Mirror Symmetry in Toric Varieties,” DUKE-TH-94–78, IASSNS-HEP-94/82, hep-th 9412236.
12.
K. Hori, “Constraints for Topological Strings in ,” UT-694.
13.
P. S.
Aspinwall
and D. R.
Morrison
, “Topological field theory and rational curves
,” Commun. Math. Phys.
151
, 245
(1993
).14.
M. Jinzenji (in preparation).
15.
B. R. Greene, D. R. Morrison, and M. R. Plesser, “Mirror Manifolds in Higher Dimension,” CLNS-93/1253, IASSNSHEP-HEP-94/2, YCTP-P31–92.
16.
M. Jinzenji, “Construction of Free Energy of Calabi-Yau Manifold embedded in via Torus Actions,” UT-HEP-703–95.
17.
C. Vafa, “Topological Mirrors and Quantum Rings,” HUTP-91/A059.
This content is only available via PDF.
© 1997 American Institute of Physics.
1997
American Institute of Physics
You do not currently have access to this content.