In this work we examine the basis functions for classical and quantum mechanical systems on the two-dimensional hyperboloid that admit separation of variables in at least two coordinate systems. We present all of these cases from a unified point of view. In particular, all of the special functions that arise via variable separation have their essential features expressed in terms of their zeros. The principal new results are the details of the polynomial bases for each of the nonsubgroup bases, not just the subgroup spherical coordinate cases, and the details of the structure of the quadratic symmetry algebras.
REFERENCES
1.
E. G.
Kalnins
, W.
Miller
, Jr., and G. S.
Pogosyan
, “Superintegrability and associated polynomial solutions. Euclidean space and the sphere in two dimensions
,” J. Math. Phys.
37
, 6439
(1996
).2.
N. W.
Evans
, “Superintegrability in classical mechanics
,” Phys. Rev. A
41
, 5666
(1990
);N. W.
Evans
, “Group theory of the Smorodinsky-Winternitz system
,” J. Math. Phys.
32
, 3369
(1991
).3.
S.
Wojciechovski
, “Superintegrability of the Calogero-Moser system
,” Phys. Lett. A
95
, 279
(1983
).4.
N. W.
Evans
, “Super-integrability of the Winternitz system
,” Phys. Lett. A
147
, 483
(1990
).5.
C. P.
Boyer
, E. G.
Kalnins
, and P.
Winternitz
, “Completely integrable relativistic Hamiltonian systems and separation of variables in Hermitian hyperbolic spaces
,” J. Math. Phys.
24
, 2022
(1983
).6.
C.
Grosche
, G. S.
Pogosyan
, and A. N.
Sissakian
, “Path integral approach to superintegrable potentials. The twodimensional hyperboloid
,” Phys. Part. Nucl.
27
, 244
(1996
).7.
L. P.
Eisenhart
, “Enumeration of potentials for which one-particle Schrödinger equations are separable
,” Phys. Rev.
74
, 87
(1948
).8.
J.
Friŝ
, V.
Mandrosov
, Ya. A.
Smorodinsky
, M.
Uhlir
, and P.
Winternitz
, “On higher symmetries in quantum mechanics
,” Phys. Lett.
16
, 354
(1965
).9.
M. N.
Olevskiî
, “Triorthogonal systems in spaces of constant curvature in which the equation allows the complete separation of variables
,” Math. Sb.
27
, 379
(1950
) (in Russian).10.
J.
Friŝ
, Ya. A.
Smorodinskii
, M.
Uhlír
, and P.
Winternitz
,“ Symmetry groups in classical and quantum mechanics
,” Sov. J. Nucl. Phys.
4
, 444
(1967
).11.
Ya. A.
Granovsky
, A. S.
Zhedanov
, and I. M.
Lutzenko
, “Quadratic algebra as a ‘hidden’ symmetry of the Hartmann potential
,” J. Phys. A
24
, 3887
(1991
).12.
C.
Grosche
, G. S.
Pogosyan
, and A. N.
Sissakian
, “Path integral discussion for Smorodinsky-Winternitz potentials: I. Two-and three dimensional Euclidean space
,” Fortschr. Phys.
43
, 453
(1995
).13.
E. G.
Kalnins
, W.
Miller
, and M.
Tratnik
, “Families of orthogonal and biorthogonal polynomials on the n-sphere
,” SIAM J. Math. Anal.
22
, 272
(1991
).14.
E. G.
Kalnins
and W.
Miller
, “Hypergeometric expansions of Heun polynomials
,” SIAM J. Math. Anal.
22
, 1450
(1991
).15.
E. G. Kalnins and W. Miller, “Orthogonal polynomials on n-spheres: Gegenbauer, Jacobi and Heun,” inTopics in Polynomials of One and Several Variables and their Applications: A Legacy of P. L. Chebyshev (1821–1894), edited by H. M. Srivastava, T. M. Rassias, and A. Yanushauskas (World Scientific, Singapore, 1991).
16.
J.
Patera
and P.
Winternitz
, “A new basis for the representation of the rotation group. Lamé and Heun Polynomials
,” J. Math. Phys.
14
, 1130
(1973
).17.
H. L.
Krall
and I. M.
Sheffer
, “Orthogonal polynomials in two variables
,” Ann. Mat. Pure Appl.
76
, 325
(1967
).18.
W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley, Providence, RI, 1977).
19.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (editors), Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vols. I, II.
20.
A.
Frank
, and K. B.
Wolf
, “Lie algebras for systems with mixed spectra. I. The scattering Pöschl-Teller potential
” J. Math. Phys.
25
, 973
(1985
).21.
A. O.
Barut
, A.
Inomata
, and R.
Wilson
, “Algebraic treatment of the second Pöschl-Teller, Morse-Rosen and Eckart equations
,” J. Phys. A.
20
, 4075
(1987
).22.
E. G.
Kalnins
and W.
Miller
, “Separable coordinates, integrability and the Niven equations
,” J. Phys. A
25
, 5663
(1992
).23.
M. F.
Manning
and N.
Rosen
, “Potential function for vibrations of diatomic molecules
,” Phys. Rev.
44
, 953
(1933
).24.
P. W.
Higgs
, “Dynamical symmetries in a spherical geometry
,” J. Phys. A
12
, 309
(1979
).25.
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Special Functions (Nauka, Moscow, 1986).
26.
J. A.
Wilson
, “Some hypergeometric orthogonal polynomials
,” SIAM J. Math. Anal.
11
, 690
(1980
).
This content is only available via PDF.
© 1997 American Institute of Physics.
1997
American Institute of Physics
You do not currently have access to this content.