The defining conditions for the irreducible tensor operators associated with the unitary irreducible corepresentations of compact quantum group algebras are deduced first in both the right and left regular coaction formalisms. In each case it is shown that there are two types of irreducible tensor operator, which may be called ‘‘ordinary’’ and ‘‘twisted.’’ The consistency of the definitions is demonstrated, and various consequences are deduced, including generalizations of the Wigner–Eckart theorem for both the ordinary and twisted operators. Also included are discussions (within the regular coaction formalisms for compact quantum group algebras) of inner‐products, basis functions, projection operators, Clebsch–Gordan coefficients, and two types of tensor product of corepresentations. The formulation of quantum homogeneous spaces for compact quantum group algebras is discussed, and the defining conditions for the irreducible tensor operators associated with such quantum homogeneous spaces and with the unitary irreducible corepresentations of the compact quantum group algebras are then deduced. There are two versions, which correspond to restrictions of the right and left regular coactions. In each case it is again shown that there are ordinary and twisted irreducible tensor operators. Various consequences are deduced, including the corresponding generalizations of the Wigner–Eckart theorem.

1.
L. C.
Biedenharn
and
M.
Tarlini
,
Lett. Math. Phys.
20
,
271
(
1990
).
2.
M.
Nomura
,
J. Phys. Soc. Jpn.
59
,
439
(
1990
).
3.
M.
Nomura
,
J. Phys. Soc. Jpn.
59
,
2345
(
1990
).
4.
F.
Pan
,
J. Phys. A
24
,
L803
(
1991
).
5.
K.
Bragiel
,
Lett. Math. Phys.
21
,
181
(
1991
).
6.
A. U. Klimyk, Yu. F. Smirnov, and B. Gruber, in Symmetries in Science. V. Algebraic Systems, Their Representations, Realizations, and Physical Applications, edited by B. Gruber, L. C. Biedenharn, and H. D. Doebner (Plenum, New York, 1991), p. 341.
7.
Yu. F. Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov, in Ref. 6, p. 487.
8.
V.
Rittenberg
and
M.
Scheunert
,
J. Math. Phys.
33
,
436
(
1992
).
9.
A. U.
Klimyk
,
J. Phys. A
25
,
2919
(
1992
).
10.
M.
Gould
and
L. C.
Biedenharn
,
J. Math. Phys.
33
,
3613
(
1992
).
11.
L. C. Biedenharn and M. A. Lohe, in Quantum Groups, edited by P. P. Kulish, Lecture Notes in Mathematics, Vol. 1510 (Springer-Verlag, Berlin, 1992), p. 197.
12.
C.
Quesne
,
Phys. Lett. B
298
,
344
(
1993
).
13.
C.
Quesne
,
Phys. Lett. B
304
,
81
(
1993
).
14.
N.
Aizawa
,
J. Math. Phys.
34
,
1937
(
1993
).
15.
L. C.
Biedenharn
,
M. A.
Lohe
, and
H. T.
Williams
,
J. Math. Phys.
35
,
6672
(
1995
).
16.
J. F. Cornwell, Group Theory in Physics (Academic, London, 1984), Vol I.
17.
J. F. Cornwell, in Ref. 16, Vol. II.
18.
E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Friedr. Vieweg und Sohn, Braunschweig, 1931).
19.
S. L.
Woronowicz
,
Commun. Math. Phys.
111
,
613
(
1987
).
20.
S. L.
Woronowicz
,
Invt. Math.
93
,
35
(
1988
).
21.
S. L.
Woronowicz
,
Lett. Math. Phys.
21
,
35
(
1991
).
22.
M. S.
Dijkhuizen
and
T. H.
Koornwinder
,
Lett. Math. Phys.
32
,
315
(
1994
).
23.
M. S.
Dijkhuizen
and
T. H.
Koornwinder
,
Geom. Ded.
52
,
291
(
1994
).
24.
M. S. Dijkhuizen “On compact quantum groups and quantum homogeneous spaces,” Doctoral thesis, University of Amsterdam, 1994.
25.
T. H. Koornwinder “General compact quantum groups, a tutorial,” University of Amsterdam, Math. preprint 94–06, 1994.
26.
T. H. Koornwinder, in General Compact quantum groups and q-Special Functions, edited by V. Baldoni and M. A. Picardello, Pitman Research Notes in Mathematics (Longman, London, 1994), p. 46.
27.
M. E. Sweedler, Hopf Algebras (Benjamin, New York, 1969).
28.
S.
Majid
,
Int. J. Mod. Phys. A
5
,
1
(
1990
).
29.
V. Chari and A. Pressley, Quantum Groups (Cambridge University, Cambridge, 1994).
30.
V. G.
Drinfel’d
,
Leningrad Math. J.
1
,
321
(
1990
).
31.
P.
Podleś
,
Lett. Math. Phys.
99
,
193
(
1987
).
32.
M.
Noumi
,
H.
Yamada
, and
K.
Mimachi
,
Proc. Jpn. Acad. Ser. A. Math. Sci.
65
,
169
(
1989
).
33.
L. L.
Vaksman
and
Y. S.
Soibel’man
,
Leningrad Math. J.
2
,
1023
(
1991
).
34.
T.
Masuda
,
K.
Mimachi
,
Y.
Nakagami
,
M.
Noumi
,
Y.
Saburi
, and
K.
Ueno
,
J. Funct. Anal.
99
,
127
(
1991
).
35.
M. Noumi and K. Mimachi, in Ref. 11, pp. 98–103.
36.
M.
Noumi
,
H.
Yamada
, and
K.
Mimachi
,
Jpn. J. Math.
19
,
31
(
1993
).
37.
S. Majid, in Quantum Groups, Integrable Statistical Models, and Knot Theory, edited by M. L. Ge and H. J. de Vega (World Scientific, Singapore, 1993), p. 231.
This content is only available via PDF.
You do not currently have access to this content.