Defining conditions for irreducible tensor operators associated with the unitary irreducible corepresentations of compact quantum group algebras are deduced within the framework of the abstract carrier space formalism. It is shown that there are two types of irreducible tensor operator, which may be called ‘ordinary’ and ‘twisted’. The consistency of the definitions is demonstrated, and various consequences are deduced, including generalizations of the Wigner–Eckart theorem for both the ordinary and twisted operators. Examples of irreducible tensor operators for the standard deformation of the function algebra of the compact Lie group SU(2) are described to demonstrate the applicability of the new definitions.

1.
J. F. Cornwell, submitted to J. Math. Phys.
2.
J. F. Cornwell, Group Theory in Physics (Academic, London, 1984), Vol. I.
3.
J. F. Cornwell, Group Theory in Physics (Academic, London, 1984), Vol. II.
4.
S. L.
Woronowicz
,
Commun. Math. Phys.
111
,
613
(
1987
).
5.
S. L.
Woronowicz
,
Invent. Math.
93
,
35
(
1988
).
6.
S. L.
Woronowicz
,
Lett. Math. Phys.
21
,
35
(
1991
).
7.
M. S.
Dijkhuizen
and
T. H.
Koornwinder
,
Lett. Math. Phys.
32
,
315
(
1994
).
8.
M. S.
Dijkhuizen
and
T. H.
Koornwinder
,
Geometriae Dedicata
52
,
291
(
1994
).
9.
M. S. Dijkhuizen, “On compact quantum groups and quantum homogeneous spaces,” Doctoral thesis, University of Amsterdam, 1994.
10.
T. H. Koornwinder, General Compact Quantum Groups, A Tutorial, University of Amsterdam, Mathematics preprint 94–06 (1994).
11.
T. H. Koornwinder, in General Compact Quantum Groups and q-Special Functions, edited by V. Baldoni and M. A. Picardello, Pitman Research Notes in Mathematics (Longman, London, 1994), p. 46.
12.
M. S.
Dijkhuizen
and
T. H.
Koornwinder
,
Geometriae Dedicata
52
,
291
(
1994
).
13.
V.
Rittenberg
and
M.
Scheunert
,
J. Math. Phys.
33
,
436
(
1992
).
14.
M.
Rosso
,
Commun. Math. Phys.
117
,
581
(
1988
).
15.
M.
Nomura
,
J. Phys. Soc. Jpn.
59
,
4260
(
1990
).
16.
M.
Nomura
,
J. Math. Phys.
30
,
2397
(
1989
).
17.
L. C.
Biedenharn
,
J. Phys. A
22
,
L873
(
1989
).
18.
A. J.
Macfarlane
,
J. Phys. A
22
,
4581
(
1989
).
19.
L. C.
Biedenharn
and
M.
Tarlini
,
Lett. Math. Phys.
20
,
271
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.