In this work we examine the basis functions for those classical and quantum mechanical systems in two dimensions which admit separation of variables in at least two coordinate systems. We do this for the corresponding systems defined in Euclidean space and on the two‐dimensional sphere. We present all of these cases from a unified point of view. In particular, all of the special functions that arise via variable separation have their essential features expressed in terms of their zeros. The principal new results are the details of the polynomial bases for each of the nonsubgroup bases, not just the subgroup Cartesian and polar coordinate cases, and the details of the structure of the quadratic algebras. We also study the polynomial eigenfunctions in elliptic coordinates of the n‐dimensional isotropic quantum oscillator.

1.
L. P.
Eisenhart
, “
Enumeration of Potentials for which One-Particle Schrödinger Equations are Separable
,”
Phys. Rev.
74
,
87
(
1948
).
2.
J.
Frič
,
V.
Mandrosov
,
Ya. A.
Smorodinsky
,
M.
Uhlir
, and
P.
Winternitz
, “
On Higher Symmetries in Quantum Mechanics
,”
Phys. Lett.
16
,
354
(
1965
).
3.
J.
Friš
,
Ya. A.
Smorodinskii
,
M.
Uhlír
, and
P.
Winternitz
, “
Symmetry Groups in Classical and Quantum Mechanics
,”
Sov. J. Nucl. Phys.
4
,
444
(
1967
).
4.
A. A.
Makarov
,
Ya. A.
Smorodinsky
,
Kh.
Valiev
, and
P.
Winternitz
, “
A Systematic Search for Nonrelativistic Systems with Dynamical Symmetries
,”
Nuovo Cimento A
52
,
1061
(
1967
).
5.
D.
Bonatos
,
C.
Daskaloyannis
, and
K.
Kokkotas
, “
Deformed Oscillator Algebras for Two-Dimensional Quantum Superintegrable Systems
,”
Phys. Rev. A
50
,
3700
(
1994
).
6.
F.
Calogero
, “
Solution of a three-body problem in one dimension
,”
J. Math. Phys.
10
,
2191
(
1969
).
7.
A.
Cisneros
and
H. V.
McIntosh
, “
Symmetry of the two-dimensional hydrogen atom
,”
J. Math. Phys.
10
,
277
(
1969
).
8.
L. G.
Mardoyan
,
G. S.
Pogosyan
,
A. N.
Sissakian
, and
V. M.
Ter-Antonyan
, “
Elliptic Basis for a Circular Oscillator
,”
Nuovo Cimento B
88
,
43
(
1985
);
Two-Dimensional Hydrogen Atom: I. Elliptic Bases
, ”
Theor. Math. Phys.
61
,
1021
(
1984
);
Hidden symmetry, Separation of Variables and Interbasis Expansions in the Two-Dimensional Hydrogen Atom
,”
J. Phys. A
18
,
455
(
1985
).
9.
B.
Zaslow
and
M. E.
Zandler
, “
Two-dimensional analog of the hydrogen atom
,”
Am. J. Phys.
35
,
1118
(
1967
).
10.
N. W.
Evans
, “
Superintegrability in Classical Mechanics
,”
Phys. Rev. A
41
,
5666
(
1990
);
Group theory of the Smorodinsky-Winternitz system
,”
J. Math. Phys.
32
,
3369
(
1991
).
11.
N. W.
Evans
, “
Superintegrability of the Calogero-Moser System
,”
Phys. Lett. A
95
,
279
(
1983
);
Super-Integrability of the Winternitz System
,”
Phys. Lett. A
147
,
483
(
1990
).
12.
H. L.
Krall
and
I. M.
Sheffer
, “
Orthogonal Polynomials in Two Variables
,”
Ann. Mat. Pura Appl.
76
(
4
),
325
(
1967
).
13.
W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley, Providence, RI, 1977).
14.
Ya. A.
Granovsky
,
A. S.
Zhedanov
, and
I. M.
Lutzenko
, “
Quadratic Algebra as a ’Hidden’ Symmetry of the Hartmann Potential
,”
J. Phys. A
24
,
3887
(
1991
).
15.
M.
Kibler
and
T.
Negadi
,
Creatica Chemica Acta CCACCA
,
57
(
6
),
1509
1523
(
1984
).
16.
C.
Grosche
,
G. S.
Pogosyan
, and
A. N.
Sissakian
, “
Path Integral Discussion for Smorodinsky-Winternitz Potentials: I. Two-and Three-Dimensional Euclidean Space
,”
Fortschr. Phys.
43
,
453
(
1995
).
17.
C.
Boyer
, “
Lie Theory and Separation of Variables for the Equation iUt2U−(α/x12+β/x22)U = 0
,”
SIAM J. Math. Anal.
7
,
230
(
1976
).
18.
P.
Letourneau
and
L.
Vinet
, “
Superintegrable Systems: Polynomial Algebras and Quasi-Exactly Solvable Hamiltonians
,”
Ann. Phys.
243
,
144
(
1995
).
19.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Vol. II (Cambridge U.P., Cambridge, 1927).
20.
C. R.
Holt
, “
Construction of new integrable Hamiltonians in two degrees of freedom
,”
J. Math. Phys.
23
,
1037
(
1982
).
21.
E. G.
Kalnins
,
W.
Miller
, and
M.
Tratnik
, “
Families of Orthogonal and Biorthogonal Polynomials on the n-sphere
,”
SIAM J. Math. Anal.
22
,
272
(
1991
).
22.
E. G.
Kalnins
and
W.
Miller
, “
Hypergeometric Expansions of Heun Polynomials
,”
SIAM J. Math. Anal.
22
,
1450
(
1991
).
23.
E. G. Kalnins and W. Miller, “Orthogonal Polynomials on n-spheres: Gegenbauer, Jacobi and Heun,” in Topics in Polynomials of One and Several Variables and their Applications: A Legacy of P. L. Chebyshev (1821–1894), edited by H. M. Srivastava, T. M. Rassias, and A. Yanushauskas (World Scientific, Singapore, 1991).
24.
J.
Patera
and
P.
Winternitz
, “
A New basis for the representation of the rotation group. Lamé and Heun polynomials
,”
J. Math. Phys.
14
,
1130
(
1973
).
25.
C.
Boyer
,
E.
Kalnins
, and
W.
Miller
, Jr.
, “
Lie theory and separation of variables, 7; The Harmonic Oscillator in Elliptic Coordinates and Ince Polynomials
,”
J. Math. Phys.
16
,
512
(
1975
).
26.
W. Kallies, I. Lukach, G. S. Pogosyan, and A. N. Sissakian, “Ellipsoidal Bases for Harmonic Oscillator,” in Proceedings of the “International Workshop on ’Symmetry Methods in Physics’ in Memory of Prof. Ya. A. Smorodinsky” (Publishing Department of JINR, Dubna, 1994), Vol. 1, p. 206, Preprint JINR, E2–94–230, Dubna, 1994.
This content is only available via PDF.
You do not currently have access to this content.