We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps.
REFERENCES
1.
P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford U.P., London, 1958).
2.
A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gelfand Triplets, Springer Lecture Notes on Physics, Vol. 348 (1989).
3.
I. Gelfand and G. Shilov, Generalized Functions Vol. 3: Theory of Differential Equations (Academic, New York, 1967).
4.
I. Gelfand and N. Vilenkin, Generalized Functions Vol. 4: Applications of Harmonic Analysis (Academic, New York, 1964).
5.
K. Maurin, General Eigenfunction Expansions and Unitary Representations of Topological Groups (Polish Scientific Publishers, Warsaw, 1968).
6.
J.-P.
Antoine
, “Dirac formalism and symmetry problems in quantum mechanics. I. General Dirac formalism
,” J. Math. Phys.
10
, 53
–69
(1969
).7.
D.
Fredricks
, “Tight riggings for a complete set of commuting observables
,” Rep. Math. Phys.
8
, 277
–293
(1975
).8.
O.
Melsheimer
, “Rigged Hilbert space formalism as extended mathematical formalism for quantum systems. I. General theory
,” J. Math. Phys.
15
, 902
–916
(1974
).9.
I.
Antoniou
and I.
Prigogine
, “Intrinsic irreversibility and integrability of dynamics
,” Physica A
192
, 443
–464
(1993
).10.
I. Cornfeld, S. Fomin, and Ya. Sinai, Ergodic Theory (Springer-Verlag, Berlin, 1982).
11.
A. Lasota and M. Mackey, Chaos, Fractals, and Noise (Springer-Verlag, Berlin, 1994).
12.
M.
Pollicott
, “Meromorphic endomorphisms of Lebesgue spaces
,” Invent. Math.
85
, 147
–164
(1986
).13.
D.
Ruelle
, “Resonances of chaotic dynamical systems
,” Phys. Rev. Lett.
56
, 405
–407
(1986
).14.
J.-P. Eckmann, “Resonances in dynamical systems,” Proceedings of the IXth International Congress on Mathematical Physics, edited by B. Simon (Hilger, Bristol, 1989), pp. 192–207.
15.
D.
Ruelle
, “An extension of the theory of Fredholm determinants
,” Publ. Math. IHES
72
, 175
–193
(1990
) (1993
).16.
G. Roepstorff, “On the Exponential Decay of Correlations in Exact Dynamical Systems,” preprint, Institute for Advanced Studies, Princeton (1987).
17.
I.
Antoniou
and S.
Tasaki
, “Generalized spectral decomposition of mixing dynamical systems
,” Int. J. Quant. Chem.
46
, 425
–474
(1993
).18.
I.
Antoniou
and S.
Tasaki
, “Spectral decomposition of the Renyi map
,” J. Phys. A
26
, 73
–94
(1993
).19.
I.
Antoniou
and S.
Tasaki
, “Generalized spectral decomposition of the β-adic baker’s transformation and intrinsic irreversibility
,” Physica A
190
, 303
–329
(1992
).20.
H.
Mori
, B.
So
, and T.
Ose
, “Time correlation functions of one dimensional transformations
,” Progr. Theor. Phys.
66
, 1266
–1283
(1981
).21.
M.
Dörfle
, “Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map
,” J. Stat. Phys.
40
, 93
–103
(1985
).22.
P.
Gaspard
, “r-adic one dimensional maps and the Euler summation formula
,” J. Phys. A
25
, L483
-L485
(1992
);P.
Gaspard
, “Diffusion in uniformly hyperbolic one-dimensional maps and Appel polynomials
,” Phys. Lett. A
168
, 13
–17
(1992
).
This content is only available via PDF.
© 1996 American Institute of Physics.
1996
American Institute of Physics
You do not currently have access to this content.