We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps.

1.
P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford U.P., London, 1958).
2.
A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gelfand Triplets, Springer Lecture Notes on Physics, Vol. 348 (1989).
3.
I. Gelfand and G. Shilov, Generalized Functions Vol. 3: Theory of Differential Equations (Academic, New York, 1967).
4.
I. Gelfand and N. Vilenkin, Generalized Functions Vol. 4: Applications of Harmonic Analysis (Academic, New York, 1964).
5.
K. Maurin, General Eigenfunction Expansions and Unitary Representations of Topological Groups (Polish Scientific Publishers, Warsaw, 1968).
6.
J.-P.
Antoine
, “
Dirac formalism and symmetry problems in quantum mechanics. I. General Dirac formalism
,”
J. Math. Phys.
10
,
53
69
(
1969
).
7.
D.
Fredricks
, “
Tight riggings for a complete set of commuting observables
,”
Rep. Math. Phys.
8
,
277
293
(
1975
).
8.
O.
Melsheimer
, “
Rigged Hilbert space formalism as extended mathematical formalism for quantum systems. I. General theory
,”
J. Math. Phys.
15
,
902
916
(
1974
).
9.
I.
Antoniou
and
I.
Prigogine
, “
Intrinsic irreversibility and integrability of dynamics
,”
Physica A
192
,
443
464
(
1993
).
10.
I. Cornfeld, S. Fomin, and Ya. Sinai, Ergodic Theory (Springer-Verlag, Berlin, 1982).
11.
A. Lasota and M. Mackey, Chaos, Fractals, and Noise (Springer-Verlag, Berlin, 1994).
12.
M.
Pollicott
, “
Meromorphic endomorphisms of Lebesgue spaces
,”
Invent. Math.
85
,
147
164
(
1986
).
13.
D.
Ruelle
, “
Resonances of chaotic dynamical systems
,”
Phys. Rev. Lett.
56
,
405
407
(
1986
).
14.
J.-P. Eckmann, “Resonances in dynamical systems,” Proceedings of the IXth International Congress on Mathematical Physics, edited by B. Simon (Hilger, Bristol, 1989), pp. 192–207.
15.
D.
Ruelle
, “
An extension of the theory of Fredholm determinants
,”
Publ. Math. IHES
72
,
175
193
(
1990
) (
1993
).
16.
G. Roepstorff, “On the Exponential Decay of Correlations in Exact Dynamical Systems,” preprint, Institute for Advanced Studies, Princeton (1987).
17.
I.
Antoniou
and
S.
Tasaki
, “
Generalized spectral decomposition of mixing dynamical systems
,”
Int. J. Quant. Chem.
46
,
425
474
(
1993
).
18.
I.
Antoniou
and
S.
Tasaki
, “
Spectral decomposition of the Renyi map
,”
J. Phys. A
26
,
73
94
(
1993
).
19.
I.
Antoniou
and
S.
Tasaki
, “
Generalized spectral decomposition of the β-adic baker’s transformation and intrinsic irreversibility
,”
Physica A
190
,
303
329
(
1992
).
20.
H.
Mori
,
B.
So
, and
T.
Ose
, “
Time correlation functions of one dimensional transformations
,”
Progr. Theor. Phys.
66
,
1266
1283
(
1981
).
21.
M.
Dörfle
, “
Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map
,”
J. Stat. Phys.
40
,
93
103
(
1985
).
22.
P.
Gaspard
, “
r-adic one dimensional maps and the Euler summation formula
,”
J. Phys. A
25
,
L483
-
L485
(
1992
);
P.
Gaspard
, “
Diffusion in uniformly hyperbolic one-dimensional maps and Appel polynomials
,”
Phys. Lett. A
168
,
13
17
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.