One may introduce at least three different Lie algebras in any Lagrangian field theory: (i) the Lie algebra of local BRST cohomology classes equipped with the odd Batalin–Vilkovisky antibracket, which has attracted considerable interest recently; (ii) the Lie algebra of local conserved currents equipped with the Dickey bracket; and (iii) the Lie algebra of conserved, integrated charges equipped with the Poisson bracket. We show in this paper that the subalgebra of (i) in ghost number −1 and the other two algebras are isomorphic for a field theory without gauge invariance. We also prove that, in the presence of a gauge freedom, (ii) is still isomorphic to the subalgebra of (i) in ghost number −1, while (iii) is isomorphic to the quotient of (ii) by the ideal of currents without charge. In ghost number different from −1, a more detailed analysis of the local BRST cohomology classes in the Hamiltonian formalism allows one to prove an isomorphism theorem between the antibracket and the extended Poisson bracket of Batalin, Fradkin, and Vilkovisky.

1.
J. Zinn-Justin, “Renormalisation of gauge theories,” in Trends in Elementary Particle Theory, Lecture Notes in Physics No. 37 (Springer-Verlag, Berlin, 1975);
B. W. Lee, “Gauge theories,” in Methods in Field Theory, Les Houches Lectures 1975, edited by R. Balian and J. Zinn-Justin (North-Holland, New York, 1976);
H.
Kluberg-Stern
and
J. B.
Zuber
,
Phys. Rev.
D12
,
467
,
482
(
1975
);
J. A.
Dixon
,
Nucl. Phys.
B99
,
420
(
1975
).
2.
I. A.
Batalin
and
G. A.
Vilkovisky
,
Phys. Lett.
102B
,
27
(
1981
);
I. A.
Batalin
and
G. A.
Vilkovisky
,
Phys. Rev. D
28
,
2567
(
1983
);
I. A.
Batalin
and
G. A.
Vilkovisky
,
Phys. Rev. D
30
,
508
(
1984
).
3.
M.
Bochicchio
,
Phys. Lett. B
193
,
31
(
1987
);
C. B.
Thorn
,
Phys. Rep.
175
,
1
(
1989
);
B.
Zwiebach
,
Nucl. Phys.
B390
,
33
(
1993
);
E.
Witten
,
Phys. Rev. D
46
,
5467
(
1992
);
E.
Verlinde
,
Nucl. Phys.
B381
, (
1992
);
H.
Hata
and
B.
Zwiebach
,
Ann. Phys.
229
,
177
(
1994
).
4.
L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics (World Scientific, Singapore, 1991), Vol. 12.
5.
E. S.
Fradkin
and
G. A.
Vilkovisky
,
Phys. Lett. B
55
,
224
(
1975
);
I. A.
Batalin
and
G. A.
Vilkovisky
,
Phys. Lett. B
69
,
309
(
1977
);
E. S.
Fradkin
and
T. E.
Fradkina
,
Phys. Lett. B
72
,
343
(
1977
).
6.
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992).
7.
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics (Springer-Verlag, New York, 1986), Vol. 107.
8.
G.
Barnich
,
F.
Brandt
, and
M.
Henneaux
, “
Local BRST cohomology in the antifield formalism: I. General theorems
”,
Commun. Math. Phys.
174
,
57
(
1995
).
9.
M.
Dubois-Violette
,
M.
Henneaux
,
M.
Talon
, and
C. M.
Viallet
,
Phys. Lett. B
267
,
81
(
1991
).
10.
G.
Barnich
,
M.
Henneaux
, and
C.
Schomblond
,
Phys. Rev. D
44
,
939
(
1991
).
11.
J.
Fisch
and
M.
Henneaux
,
Phys. Lett. B
226
,
80
(
1989
);
W.
Siegel
,
Int. J. Mod. Phys. A
4
,
3951
(
1989
).
12.
P.
Mc Cloud
,
Class. Quantum Grav.
11
,
567
(
1994
).
13.
D. J. Saunders, The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series 142 (Cambridge University Press, Cambridge, 1989).
14.
I. M. Anderson, The Variational Bicomplex (Academic Press, Boston, 1994);
Contemp. Math.
132
,
51
(
1992
).
15.
Th. De Donder, Théorie Invariantive du Calcul des Variations (Gauthier-Villars, Paris, 1935).
16.
E.
Witten
,
Mod. Phys. Lett. A
5
,
487
(
1990
).
17.
G.
Barnich
,
Mod. Phys. Lett. A
9
,
665
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.