We present a semiclassical theory of weak disorder effects in small structures and apply it to the magnetic response of non‐interacting electrons confined in integrable geometries. We discuss the various averaging procedures describing different experimental situations in terms of one‐ and two‐particle Green functions. We demonstrate that the anomalously large zero‐field susceptibility characteristic of clean integrable structures is only weakly suppressed by disorder. This damping depends on the ratio of the typical size of the structure with the two characteristic length scales describing the disorder (elastic mean‐free‐path and correlation length of the potential) in a power‐law form for the experimentally relevant parameter region. We establish the comparison with the available experimental data and we extend the study of the interplay between disorder and integrability to finite magnetic fields.

1.
H.U.
Baranger
,
R.A.
Jalabert
, and
A.D.
Stone
,
Chaos
3
,
665
(
1993
).
2.
C.M.
Marcus
,
R.M
Westervelt
,
P.F.
Hopkings
, and
A.C.
Gossard
,
Chaos
,
3
,
643
(
1993
).
3.
A. M.
Chang
,
H.U.
Baranger
,
L. N.
Pfeiffer
, and
K. W.
West
,
Phys. Rev. Lett.
73
,
2111
(
1994
).
4.
M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1990).
5.
D.
Ullmo
,
K.
Richter
, and
R.A.
Jalabert
,
Phys. Rev. Lett.
74
,
383
(
1995
).
6.
K. Richter, D. Ullmo, and R.A. Jalabert, Phys. Rep. (in print, 1996).
7.
F.
von Oppen
,
Phys. Rev. B
50
,
17151
(
1994
).
8.
S.
Das Sarma
and
F.
Stern
,
Phys. Rev. B
32
,
8442
(
1988
).
9.
A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, 1963).
10.
K.
Efetov
,
Adv. Phys.
32
,
53
(
1983
).
11.
H.U.
Baranger
and
P.
Mello
,
Phys. Rev. Lett.
73
,
142
(
1994
).
12.
R.A.
Jalabert
,
J.-L.
Pichard
, and
C. W. J.
Beenakker
,
Europhys. Lett.
27
,
255
(
1994
).
13.
Z.
Pluhar̆
,
H. A.
Weidenmüller
,
J. A.
Zuk
, and
C. H.
Lewenkopf
,
Phys. Rev. Lett.
73
,
2115
(
1994
).
14.
K.
Efetov
Phys. Rev. Lett.
74
,
2299
(
1995
).
15.
B. L.
Altshuler
and
B. I.
Shklovskii
,
Zh. Éksp. Teor. Fiz.
91
,
220
(
1986
)
[
B. L.
Altshuler
and
B. I.
Shklovskii
,
Sov. Phys. JETP
64
,
127
(
1986
)].
16.
K.
Richter
,
D.
Ullmo
, and
R.A.
Jalabert
,
Phys. Rev. B
56
,
R
5219
(
1996
).
17.
A.
Schmid
,
Phys. Rev. Lett.
66
,
80
(
1991
);
F.
von Oppen
and
E.K.
Riedel
,
Phys. Rev. Lett.
66
,
84
(
1991
); ,
Phys. Rev. Lett.
B.L.
Altshuler
,
Y.
Gefen
, and
Y.
Imry
,
Phys. Rev. Lett.
66
,
88
(
1991
).,
Phys. Rev. Lett.
18.
Y. Imry, in Coherence Effects in Condensed Matter Systems, edited by B. Kramer (Plenum, New York, 1991).
19.
M.V.
Berry
, and
M.
Tabor
,
Proc. R. Soc. London, Ser. A
349
,
101
(
1976
).
20.
A.M. Ozorio de Almeida, in Quantum Chaos and Statistical Nuclear Physics, edited by T.H. Seligman and H. Nishioka, Lecture Notes in Physics 263 (Springer, Berlin 1986).
21.
L.P.
Lévy
,
D.H.
Reich
,
L.
Pfeiffer
, and
K.
West
,
Physica B
189
,
204
(
1993
).
22.
A.
Altland
and
Y.
Gefen
,
Phys. Rev. B
51
,
10671
(
1995
).
23.
We do not aim to describe disorder within a microscopic model as for example that by Nixon and Davies(
J.A.
Nixon
and
J.H.
Davies
,
Phys. Rev. B
41
,
7929
(
1990
)), where calculations for realistic distributions of residual impurities in a semiconductor heterostructure are performed.
24.
Self-consistent calculations indicate that the characteristic scale ξ can be in the order of 100–200 nm, A.M. Zagoskin et al., (preprint, Cond-Mat/9404077).
25.
A. D. Mirlin, E. Altshuler, and P. Wölfle (preprint, Cond-Mat/9507081).
26.
A mixed approach for the diffusive regime where the individual scattering is treated quantum mechanically and the propagation between collisions (with δ-like scatterers) in terms of semiclassical paths can be found in
S.
Chakravarty
and
A.
Schmid
,
Phys. Rep.
140
,
193
(
1986
).
27.
For diagrammatic approaches to disorder effects on the susceptibility of small magnetic particles see
S.
Oh
,
A.
Yu. Zyuzin
, and
A.
Serota
,
Phys. Rev. B
44
,
8858
(
1991
);
A.
Raveh
and
B.
Shapiro
,
Europhys. Lett.
19
,
109
(
1992
);
B.L.
Altshuler
,
Y.
Gefen
,
Y.
Imry
, and
G.
Montambaux
,
Phys. Rev. B
47
,
10340
(
1993
).
28.
S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physicists (Addison–Wesley, Reading, 1978).
29.
That is, we implicitly assume that spatial fluctuations in the impurity potentials Vα(r) are independent of V̄. This may lead to an overestimation of impurity effects for configurations with extreme values of which are however of exponentially small number.
30.
A proper treatment of these non-diagonal terms in the clean limit is an outstanding problem in the context of semiclassical quantum transport.
31.
D.
Mailly
,
C.
Chapelier
, and
A.
Benoit
,
Phys. Rev. Lett.
70
,
2020
(
1993
).
32.
Y.
Gefen
,
D.
Braun
, and
G.
Montambaux
,
Phys. Rev. Lett.
73
,
154
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.