In this second of two articles (designated I and II), the bilinear transformation method is used to obtain stationary periodic solutions of the partially integrable regularized long‐wave (RLW) equation. These solutions are expressed in terms of Riemann theta functions, and this approach leads to a new and compact expression for the important dispersion relation. The periodic solution (or cnoidal wave) can be represented as an infinite sum of sech2 ‘‘solitary waves’’: this remarkable property may be interpreted in the context of a nonlinear superposition principle. The RLW cnoidal wave approximates to a sinusoidal wave and a solitary wave in the limits of small and large amplitudes, respectively. Analytic approximations and error estimates are given which shed light on the character of the cnoidal wave in the different parameter regimes. Similar results are presented in brief for the related RLW Boussinesq (RLWB) equation.

1.
R.
Hirota
,
Phys. Rev. Lett.
27
,
1192
(
1971
).
2.
Y. Matsuno, Bilinear Transformation Method, Mathematics in Science and Engineering Vol. 184 (Academic, Orlando, 1984).
3.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
,
Phys. Rev. Lett.
19
,
1095
(
1967
).
4.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
,
Commun. Pure Appl. Math.
27
,
97
(
1974
).
5.
C.
Yan
,
J. Math. Phys.
34
,
2618
(
1993
).
6.
C. Yan (private communication).
7.
A.
Parker
,
J. Math. Phys.
36
,
3498
(
1995
), previous paper.
8.
P. J.
Olver
,
Proc. Cambridge Philos. Soc.
85
,
143
(
1979
).
9.
K. O.
Abdulloev
,
I. L.
Bogolubsky
, and
V. G.
Makhankov
,
Phys. Lett. A
56
,
427
(
1976
).
10.
J. L.
Bona
,
W. G.
Pritchard
, and
L.
Ridgway Scott
,
Phys. Fluids
23
,
438
(
1980
).
11.
A.
Nakamura
,
J. Phys. Soc. Jpn.
47
,
1701
(
1979
).
12.
J. P.
Boyd
,
Physica D
21
,
227
(
1986
).
13.
M.
Toda
,
Phys. Rep.
18
,
1
(
1975
).
14.
A. A.
Zaitsev
,
Sov. Phys. Dokl.
28
,
720
(
1983
).
15.
G. B.
Whitham
,
IMA J. Appl. Math.
32
,
353
(
1984
).
16.
J. P.
Boyd
,
SIAM J. Appl. Math.
44
,
952
(
1984
).
17.
T.
Miloh
and
M. P.
Tulin
,
J. Phys. A
22
,
921
(
1989
).
18.
T.
Miloh
,
J. Fluid Mech.
211
,
617
(
1990
).
19.
A.
Parker
,
J. Phys. A
25
,
2005
(
1992
).
20.
A.
Parker
,
Proc. R. Soc. London, Ser. A
438
,
113
(
1992
).
21.
R.
Hirota
,
J. Math. Phys.
14
,
810
(
1973
).
22.
D. F. Lawden, Elliptic Functions and Applications, Applied Mathematical Sciences, Vol. 80 (Springer-Verlag, Berlin, 1989).
23.
J. P.
Boyd
,
J. Math. Phys.
23
,
375
(
1982
).
24.
A.
Nakamura
and
Y.
Matsuno
,
J. Phys. Soc. Jpn.
48
,
653
(
1980
).
25.
J. P. Boyd and H. E. Haupt, in Nonlinear Topics in Ocean Physics, Proceedings of the Enrico Fermi School, edited by A. R. Osborne and L. Bergamasco (North-Holland, Amsterdam, 1989).
26.
H.
Grad
and
P. N.
Hu
,
Phys. Fluids
10
,
2596
(
1967
).
27.
R. S.
Johnson
,
Phys. Fluids
15
,
1693
(
1972
).
28.
Y.
Kuramoto
and
T.
Tsuzuki
,
Prog. Theor. Phys.
55
,
356
(
1976
).
29.
G. I.
Sivashinsky
,
Annu. Rev. Fluid Mech.
15
,
179
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.