For Riemannian manifolds with boundary, the well‐known Gauss–Bonnet–Chern theorem gives an integral formula for the Euler characteristic of the manifold. Here we extend a proof by Avez to show that there is a similar result for manifolds with boundary endowed with a pseudo–Riemannian metric of arbitrary signature. In the case when the metric is Lorentzian there are some applications to general relativity. The generalized Gauss–Bonnet–Chern theorem also provides a formula for the gravitational kink.

1.
S. S.
Chern
, “
On the curvatura integra in a Riemannian manifold
,”
Ann. Math.
46
,
674
684
(
1945
).
2.
S. S.
Chern
, “
Pseudo-Riemannian geometry and the Gauss-Bonnet formula
,”
Acad. Brasil. Geneias
35
,
17
26
(
1963
).
3.
A.
Avez
, “
Formule de Gauss-Bonnet-Chern en métrique de signature quelconque
,”
C.R. Acad. Sci.
255
,
2049
2051
(
1962
).
4.
P. R.
Law
, “
Neutral Einstein metrics in four dimensions
,”
J. Math. Phys.
32
,
3039
3042
(
1991
).
5.
M. Spivak, Comprehensive Introduction to Differential Geometry—Volume 5 (Publish or Perish Inc., Berkeley, CA, 1979).
6.
G. W.
Gibbons
and
S. W.
Hawking
, “
Kinks and topology change
,”
Phys. Rev. Lett.
69
,
1719
1721
(
1992
).
7.
A.
Chamblin
, “
Some applications of differential topology in general relativity
,”
J. Geom. Phys.
13
,
357
377
(
1994
).
8.
E.
Newman
and
R.
Penrose
, “
An approach to gravitational radiation by a method of spin coefficients
,”
J. Math. Phys.
3
,
566
578
(
1962
).
9.
K. A.
Dunn
,
T. A.
Harriott
, and
J. G.
Williams
, “
Kink number in general relativity
,”
J. Math. Phys.
32
,
476
479
(
1991
).
10.
R. M. Wald, General Relativity (Univ. of Chicago Press, Chicago, 1984).
11.
J. Stewart, Advanced General Relativity, Cambridge Monographs on Mathematical Physics (Cambridge U. P., Cambridge, 1990).
12.
M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, and Surfaces, Graduate Texts in Mathematics (Springer-Verlag, Berlin, 1988).
This content is only available via PDF.
You do not currently have access to this content.