For Riemannian manifolds with boundary, the well‐known Gauss–Bonnet–Chern theorem gives an integral formula for the Euler characteristic of the manifold. Here we extend a proof by Avez to show that there is a similar result for manifolds with boundary endowed with a pseudo–Riemannian metric of arbitrary signature. In the case when the metric is Lorentzian there are some applications to general relativity. The generalized Gauss–Bonnet–Chern theorem also provides a formula for the gravitational kink.
REFERENCES
1.
S. S.
Chern
, “On the curvatura integra in a Riemannian manifold
,” Ann. Math.
46
, 674
–684
(1945
).2.
S. S.
Chern
, “Pseudo-Riemannian geometry and the Gauss-Bonnet formula
,” Acad. Brasil. Geneias
35
, 17
–26
(1963
).3.
A.
Avez
, “Formule de Gauss-Bonnet-Chern en métrique de signature quelconque
,” C.R. Acad. Sci.
255
, 2049
–2051
(1962
).4.
P. R.
Law
, “Neutral Einstein metrics in four dimensions
,” J. Math. Phys.
32
, 3039
–3042
(1991
).5.
M. Spivak, Comprehensive Introduction to Differential Geometry—Volume 5 (Publish or Perish Inc., Berkeley, CA, 1979).
6.
G. W.
Gibbons
and S. W.
Hawking
, “Kinks and topology change
,” Phys. Rev. Lett.
69
, 1719
–1721
(1992
).7.
A.
Chamblin
, “Some applications of differential topology in general relativity
,” J. Geom. Phys.
13
, 357
–377
(1994
).8.
E.
Newman
and R.
Penrose
, “An approach to gravitational radiation by a method of spin coefficients
,” J. Math. Phys.
3
, 566
–578
(1962
).9.
K. A.
Dunn
, T. A.
Harriott
, and J. G.
Williams
, “Kink number in general relativity
,” J. Math. Phys.
32
, 476
–479
(1991
).10.
R. M. Wald, General Relativity (Univ. of Chicago Press, Chicago, 1984).
11.
J. Stewart, Advanced General Relativity, Cambridge Monographs on Mathematical Physics (Cambridge U. P., Cambridge, 1990).
12.
M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, and Surfaces, Graduate Texts in Mathematics (Springer-Verlag, Berlin, 1988).
This content is only available via PDF.
© 1995 American Institute of Physics.
1995
American Institute of Physics
You do not currently have access to this content.