All the solutions of a three‐dimensional dynamical system describing the static and spherically symmetric solutions for a nonlinear scalar field of the Born–Infeld type are studied qualitatively. It is shown that a horizon exists for a large class of solutions in which the scalar field is finite. However, this horizon is singular. In another class of solutions, naked singularities with an everywhere well‐behaved scalar field have been found.

1.
J. E.
Chase
,
Commun. Math. Phys.
19
,
276
(
1970
);
J. D.
Bekenstein
,
Phys. Rev. D
5
,
1239
(
1972
);
J. D.
Bekenstein
,
2403
(
1970
).,
Phys. Rev. D
2.
A. I.
Janis
,
E. T.
Newman
, and
J.
Winicour
,
Phys. Rev. Lett.
20
,
878
(
1968
).
3.
J. D.
Bekenstein
,
Ann. Phys. (N. Y.)
91
,
75
(
1974
);
J. D.
Bekenstein
,
82
,
535
(
1975
).,
Ann. Phys. (N.Y.)
4.
K. A.
Bronnikov
and
Yu. N.
Kireyev
,
Phys. Lett. A
67
,
95
(
1978
).
5.
W.
Heisenberg
,
Z. Phys.
133
,
79
(
1952
);
W.
Heisenberg
,
126
,
519
(
1949
); ,
Z. Phys.
W.
Heisenberg
,
113
,
61
(
1939
).,
Z. Phys.
6.
T.
Taniuti
,
Prog. Theor. Phys. (Kyoto) Suppl.
9
,
69
(
1958
).
7.
. Bogoyavlensky, Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics (Spring Verlag, Berlin, 1985).
8.
M.
Wyman
,
Phys. Rev. D
24
,
839
(
1981
).
9.
R. Wald, General Relativity (The University of Chicago, Chicago, 1984), p. 301.
10.
H. P.
de Oliveira
,
Class. Quant. Grav.
11
,
1469
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.