Using the coherent states representation and the Schwinger boson model, the propagator of a spinning particle in interaction with an arbitrary magnetic field is derived in the framework of the path integral formalism. To show the relevance of the formalism to some applications, the Green function of spinning particle s=1/2 in special configuration of magnetic field is calculated. The transition amplitude and Berry’s phase for an arbitrary spin and time dependent magnetic field are deduced. The case of half integer spin is also considered.

1.
F. Steiner, DESY Preprint, DESY 87–146, October 1987.
2.
A. M.
Perelomov
,
Commun. Math. Phys.
26
,
22
(
1972
).
3.
Coherent States, edited by J. R. Klauder and B. Skagerstam (World Scientific, Singapore, 1985).
4.
J.
Klauder
,
Ann. Phys. (NY)
11
,
123
(
1960
).
5.
Y.
Ohnuki
and
T.
Kashiwa
,
Prog. Theor. Phys.
60
,
548
(
1978
).
6.
L. Schulman, Technique and Applications of Path Integration (Wiley, New York, 1981).
7.
T.
Miura
,
J. Math. Phys.
31
,
1189
(
1990
).
8.
M.
Nakamura
and
K.
Kitahara
,
J. Phys. Soc. Jpn.
60
,
1388
(
1991
).
9.
M.
Bergeron
,
Fortschr. Phys.
40
,
119
(
1992
).
10.
Y.
Takahashi
and
F.
Shibata
,
J. Phys. Soc. Jpn.
38
,
656
(
1975
).
11.
C.
Grosche
,
J. Phys. A
13
,
5205
(
1990
).
12.
A. M. Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, Berlin, 1986).
13.
R. Gilmore, Lie Groups, Lie Algebra, and Some of Their Applications (Wiley, New York, 1974).
14.
M.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
15.
T.
Kashiwa
,
S.
Nima
, and
S.
Sakoda
,
Ann. Phys. (NY)
220
,
248
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.