In this theory scalars, spinors, and vectors are described as particles living in a d‐dimensional ordinary and a d‐dimensional Grassmann space, with d≥5. Operators of translations and the Lorentz transformations in both spaces form the super‐Poincaré algebra. It is the super‐Pauli–Ljubanski vector of an odd Grassmann character, which generates spinors. The theory offers a new insight into quantum theory of particles and their supersymmetric nature.

1.
Y. A.
Golfand
and
E. S.
Likhtman
,
JETP Lett.
13
,
323
(
1971
).
2.
D. V.
Volkov
and
V. P.
Akulov
,
Phys. Lett. B
46
,
109
(
1973
).
3.
J.
Wess
and
B.
Zumino
,
Nucl. Phys. B
70
,
139
(
1974
).
4.
A.
Barducci
,
R.
Casalbuoni
, and
L.
Lusanna
,
Nuovo Cimento A
35
,
377
(
1976
).
5.
W.
Siegel
,
Phys. Lett. B
85
,
333
(
1979
).
6.
E. S.
Fradkin
and
D. M.
Gitman
,
Phys. Rev. D
44
,
3230
(
1991
).
7.
H.
Ikemori
,
Phys. Lett. B
199
,
239
(
1987
).
8.
(a)
N.
Mankoč-Borštnik
,
Phys. Lett. B
292
,
25
(
1992
);
N.
Mankoč-Borštnik
,
Nuovo Cimento A
105
,
1461
(
1992
);
IC/91/371, IJS.TP.92/22;
(b)
N.
Mankoč-Borštnik
,
J. Math. Phys.
34
,
3731
(
1993
);
(c)
N.
Mankoč-Borštnik
,
Int. J. Mod. Phys. A
9
,
1731
(
1994
), IJS.TP.93/3, Supersymmetry, gravity and Grassmann space, to appear in the Proceedings of the Edirne Conference Frontier in Theoretical Physics, Dec. 1993.
9.
L. Fonda and G. C. Girardi, Symmetry Principles in Quantum Physics (Marcel Dekker, New York, 1970) (Theoretical Physics), pp. 289–298.
10.
H. J. W. Mülter-Kirsten and A. Wiedemann, Supersymmetry, An Introduction with Conceptual and Calculational Details (World Scientific, Singapore, 1987), pp. 222–225.
11.
J.
Maalampi
and
M.
Roos
,
Phys. Rev.
186
,
54
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.