The recently proposed algebraic approach is used for calculating the heat kernel on covariantly constant background to study the one‐loop effective action in the non‐Abelian gauge theory. The general case of arbitrary space‐time dimension, arbitrary compact simple gauge group and arbitrary matter is considered and a covariantly constant gauge field strength of the most general form, which has many independent color and space‐time invariants, and covariantly constant scalar fields as a background (Savvidy type chromomagnetic vacuum) is assumed. The explicit formulas for all the needed heat kernels and zeta‐functions are obtained. A new method is proposed to study the vacuum stability and it will be shown that the background field configurations with covariantly constant chromomagnetic fields can be stable only in the case when the number of independent field invariants is greater than one and the values of these invariants differ little from each other. The role of space‐time dimension is analyzed in this connection and it is shown that this is possible only in space‐times of dimension greater than four.

1.
K. Huang, Quarks, Leptons and Gauge Fields (World Scientific, Singapore, 1982);
F. J. Yndurain, Quantum Chromodynamics, An Introduction to the Theory of Quarks and Gluons (Springer, Heidelberg, 1983).
2.
A. M. Polyakov, Gauge Fields and Strings (Harwood Academic, Chur, 1987).
3.
M. A.
Shifman
,
A. I.
Vainshtein
, and
V. I.
Zakharov
,
Nucl. Phys. B
147
,
385
(
1979
);
V. A.
Novikov
,
A. I.
Vainshtein
, and
V. I.
Zakharov
,
Nucl. Phys. B
191
,
301
(
1981
);
M. A.
Shifman
,
Z. Phys. C
9
,
347
(
1981
);
J. C.
Collins
, and
A.
Duncan
, and
S. D.
Joglekar
,
Phys. Rev. D
16
,
438
(
1977
);
S. L.
Adler
,
J. C.
Collins
, and
A.
Duncan
,
Phys. Rev. D
15
,
1712
(
1977
);
N. K.
Nielsen
,
Nucl. Phys. B
120
,
212
(
1977
).
4.
G.
t’Hooft
,
Phys. Rep.
142
,
357
(
1986
);
G.
t’Hooft
,
Phys. Rev. D
14
,
3432
(
1976
);
S. Coleman, in The Whys of Subnuclear Physics, edited by A. Zichichi (Plenum, New York, 1979);
C. G.
Callan
,
R. F.
Dashen
, and
D. J.
Gross
,
Phys. Rev. D
17
,
2717
(
1978
);
C. G.
Callan
,
R. F.
Dashen
, and
D. J.
Gross
,
Phys. Lett. B
66
,
375
(
1977
).
5.
R. Rajaraman, Solitons and Instantons: Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam, 1982).
6.
G. K.
Savvidy
,
Phys. Lett. B
71
,
133
(
1977
).
7.
L. D.
Landau
,
Z. Phys.
64
,
629
(
1930
).
8.
J. S.
Schwinger
,
Phys. Rev.
82
,
664
(
1951
).
9.
H.
Pagels
and
E.
Tomboulis
,
Nucl. Phys. B
143
,
485
(
1978
);
N. K.
Nielsen
and
P.
Olesen
,
Nucl. Phys. B
144
,
376
(
1978
);
N. K.
Nielsen
,
Am. J. Phys.
49
,
1171
(
1981
);
P.
Olesen
,
Phys. Scripta
23
,
1000
(
1981
);
L. F.
Abbot
,
Nucl. Phys. B
185
,
189
(
1981
);
M.
Consoli
and
G.
Preparata
,
Phys. Lett. B
154
,
411
(
1985
);
G. Preparata, in 20 Recontre Moriond. Proc. Hadron Sess., Les Arcs, 1985 (Gif sur Yvotte, 1985), Vol. 1, p. 253;
M.
Consoli
and
G.
Preparata
,
Nuovo Cimento A
96
,
366
(
1986
);
P.
Mansfield
,
Nucl. Phys. B
272
,
439
(
1986
);
M.
Schaden
,
H.
Reinhardt
,
P. A.
Amundsen
, and
M. J.
Lavelle
,
Nucl. Phys. B
339
,
595
(
1990
).
10.
S.
Coleman
and
E.
Weinberg
,
Phys. Rev. D
7
,
1888
(
1973
);
R.
Jackiw
,
Phys. Rev. D
9
,
1686
(
1974
);
E. S.
Fradkin
and
A. A.
Tseytlin
,
Nucl. Phys. B
234
,
472
(
1984
);
I. L.
Buchbinder
and
S. D.
Odintsov
,
Fortschr. Phys.
37
,
225
(
1989
).
11.
B. S. De Witt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965);
I. G.
Avramidi
,
Nucl. Phys. B
355
,
712
(
1991
);
I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro, Effective Action in Quantum Gravity (IOP, Bristol, 1992).
12.
I. G. Avramidi, “Covariant methods for calculating the low-energy effective action in quantum field theory and quantum gravity,” preprint, University of Greifswald (1994), gr-qc/9403036.
13.
I. G.
Avramidi
,
Phys. Lett. B
305
,
27
(
1993
).
14.
G. A. Vilkovisky, in Quantum Gravity, edited by S. Christensen (Adam Hilger, Bristol, 1983), p. 169;
Nucl. Phys. B
234
,
125
(
1984
);
B. S. De Witt, in Quantum Field Theory and Quantum Statistics, edited by I. A. Batalin, C. J. Isham, and G. A. Vilkovisky (Adam Hilger, Bristol, 1987), Vol. 1, p. 191;
S. D.
Odintsov
,
Fortschr. Phys.
38
,
371
(
1990
).
15.
J. S.
Dowker
and
R.
Critchley
,
Phys. Rev. D
13
,
3224
(
1976
);
S.
Hawking
,
Comm. Math. Phys.
55
,
133
(
1977
).
16.
A. O. Barut and R. Raczka, Theory of Group Representations and Applications (PWN-Polish Sci. Publ., Warszawa, 1977).
17.
A. O.
Barvinsky
and
G. A.
Vilkovisky
,
Nucl. Phys. B
282
,
163
(
1987
).
18.
I. G.
Avramidi
,
Phys. Lett. B
336
,
171
(
1994
);
“A new algebraic approach for calculating the heat kernel in quantum gravity,” preprint, University of Greifswald (1994), hep-th/9406047, submitted to J. Math. Phys.
This content is only available via PDF.
You do not currently have access to this content.