A generalization of magnetic monopoles is given over an odd dimensional contact manifold and we discuss whether the Yang–Mills–Higgs functional attains at generalized monopoles the absolute minimal value, the topological invariant.
Topics
Topological invariant
REFERENCES
1.
A. Jaffe and C. Taubes, Vortices and Monopoles (Birkháuser, Boston, 1980).
2.
3.
M. Atiyah and N. Hitchin, The Geometry and Dynamics of Magnetic Monopoles (Princeton University, Princeton, 1988).
4.
P. A.
Horváthy
and J. H.
Rawnsley
, Commun. Math. Phys.
96
, 497
(1984
).5.
D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509 (Springer-Verlag, Berlin, 1976).
6.
7.
H. J. Kim, Ph.D. thesis, Berkeley, 1985.
8.
9.
10.
S. Kobayashi, Differential Geometry of Complex Vector Bundles (Iwanami, Tokyo, 1987).
11.
12.
M. Itoh, in Geometry and its Applications, edited by Nagano et al., (World Scientific, Singapore, 1993).
This content is only available via PDF.
© 1995 American Institute of Physics.
1995
American Institute of Physics
You do not currently have access to this content.