A generalization of magnetic monopoles is given over an odd dimensional contact manifold and we discuss whether the Yang–Mills–Higgs functional attains at generalized monopoles the absolute minimal value, the topological invariant.

1.
A. Jaffe and C. Taubes, Vortices and Monopoles (Birkháuser, Boston, 1980).
2.
D.
Groisser
,
Commun. Math. Phys.
93
,
367
(
1984
).
3.
M. Atiyah and N. Hitchin, The Geometry and Dynamics of Magnetic Monopoles (Princeton University, Princeton, 1988).
4.
P. A.
Horváthy
and
J. H.
Rawnsley
,
Commun. Math. Phys.
96
,
497
(
1984
).
5.
D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509 (Springer-Verlag, Berlin, 1976).
6.
K.
Galicki
and
Y. S.
Poon
,
J. Math. Phys.
32
,
1263
(
1991
).
7.
H. J. Kim, Ph.D. thesis, Berkeley, 1985.
8.
Y.
Sun
,
Tsukuba J. Math.
14
,
505
(
1990
).
9.
N.
Manton
,
Nucl. Phys. B
135
,
319
(
1978
).
10.
S. Kobayashi, Differential Geometry of Complex Vector Bundles (Iwanami, Tokyo, 1987).
11.
H.
Pedersen
and
Y. S.
Poon
,
Commun. Math. Phys.
117
,
569
(
1986
).
12.
M. Itoh, in Geometry and its Applications, edited by Nagano et al., (World Scientific, Singapore, 1993).
This content is only available via PDF.
You do not currently have access to this content.